aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
blob: 8f7a62157f9893b599b78c57c212f8f76e59e3c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"

#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"

#include <cmath>
#include <memory>
#include <tuple>

using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;

CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights()
    : _weights_reshape_kernel()
{
}

void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups)
{
    // Perform validation step
    ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
    ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(),
                                                                          (biases != nullptr) ? biases->info() : nullptr,
                                                                          output->info(),
                                                                          num_groups));

    const bool       append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
    const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr;

    _weights_reshape_kernel.configure(weights, biases_to_use, output, num_groups);

    output->info()->set_quantization_info(weights->info()->quantization_info());
}

Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    if(biases != nullptr)
    {
        const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
        ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
        ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    if((output != nullptr) && (output->total_size() != 0))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);

        CLWeightsReshapeKernel::validate(weights, biases, output, num_groups);
    }

    return Status{};
}

void CLConvolutionLayerReshapeWeights::run()
{
    CLScheduler::get().enqueue(_weights_reshape_kernel);
}

CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _add_bias_kernel(),
      _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _data_layout(DataLayout::NCHW), _append_bias(false), _skip_im2col(false), _skip_col2im(false), _is_quantized(false),
      _is_activationlayer_enabled(false), _is_prepared(false), _run_addition(true)
{
}

void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
                                          int gemm_3d_depth)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
    ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), gemmlowp_output_stage, gemm_3d_depth, _skip_im2col,
                                           _run_addition));

    const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
                                         gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
                                         false, gemmlowp_output_stage);

    if(_is_quantized)
    {
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo input_quantization_info   = input->info()->quantization_info();
        const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();

        input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
        weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));

        _mm_gemmlowp.configure(input, weights, biases, output, gemm_info);

        // Revert back QuantizatioInfo as input and weights could be used in other convolution layers
        input->info()->set_quantization_info(input_quantization_info);
        weights->info()->set_quantization_info(weights_quantization_info);
    }
    else
    {
        // Bias does not need to be added in GEMM if im2col is being used or the Matrix Addition kernel needs to be run
        const bool skip_bias_in_gemm = _run_addition || !_skip_im2col;
        // Configure matrix multiply function
        _mm_gemm.configure(input, weights, (skip_bias_in_gemm) ? nullptr : biases, output, 1.0f, 1.0f, gemm_info);
    }
}

Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
                                           const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col, bool run_addition)
{
    const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());

    const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
                                         gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
                                         false, gemmlowp_output_stage);

    if(is_quantized)
    {
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo input_quantization_info   = input->quantization_info();
        const QuantizationInfo weights_quantization_info = weights->quantization_info();

        std::unique_ptr<ITensorInfo> input_qa   = input->clone();
        std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
        input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
        weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));

        // Perform validation step on GEMMLowp
        return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, gemm_info);
    }
    else
    {
        // Bias does not need to be added in GEMM if im2col is being used or the Matrix Addition kernel needs to be run
        const bool skip_bias_in_gemm = run_addition || !skip_im2col;
        // Perform validation step on Matrix multiply function
        return CLGEMM::validate(input, weights, (skip_bias_in_gemm) ? nullptr : biases, output, 1.0f, 1.0f, gemm_info);
    }
}

void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
                                       const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);

    ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(),
                                                                weights->info(),
                                                                biases != nullptr ? biases->info() : nullptr,
                                                                output->info(),
                                                                conv_info,
                                                                weights_info,
                                                                dilation,
                                                                act_info,
                                                                num_groups));

    const DataType   data_type   = input->info()->data_type();
    const DataLayout data_layout = input->info()->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->info()->dimension(idx_width);
    const unsigned int kernel_height = weights->info()->dimension(idx_height);

    _is_prepared                = weights_info.retain_internal_weights();
    _original_weights           = weights;
    _is_quantized               = is_data_type_quantized_asymmetric(input->info()->data_type());
    _data_layout                = data_layout;
    _skip_im2col                = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
    _skip_col2im                = data_layout == DataLayout::NHWC;
    _append_bias                = (biases != nullptr) && (!_is_quantized);
    _is_activationlayer_enabled = act_info.enabled();
    // In case of F16, fused bias will be used in GEMM
    _run_addition = (_skip_im2col) && (_append_bias) && (data_type != DataType::F16);

    // Set the GPU target for im2col and col2im
    _im2col_kernel.set_target(CLScheduler::get().target());
    _col2im_kernel.set_target(CLScheduler::get().target());

    const ICLTensor *gemm_input_to_use  = input;
    ICLTensor       *gemm_output_to_use = output;

    const ICLTensor *biases_to_use = (_append_bias && !_skip_im2col) ? biases : nullptr;

    // Get parameters from conv_info
    unsigned int stride_x = 0;
    unsigned int stride_y = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();

    // Get convolved dimensions
    unsigned int conv_w = 0;
    unsigned int conv_h = 0;
    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width),
                                                 input->info()->dimension(idx_height),
                                                 kernel_width,
                                                 kernel_height,
                                                 conv_info,
                                                 dilation);

    unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels) / num_groups;

    // _weights_reshaped will be auto configured in the kernel.
    // Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM
    _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, num_groups);

    // Create tensor to store im2col reshaped inputs
    if(!_skip_im2col)
    {
        _memory_group.manage(&_im2col_output);

        // Configure and tune im2col. im2col output shape is auto-initialized
        _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, _append_bias, dilation, num_groups);

        // Set quantization info
        _im2col_output.info()->set_quantization_info(input->info()->quantization_info());
        CLScheduler::get().tune_kernel_static(_im2col_kernel);

        // Update GEMM input
        gemm_input_to_use = &_im2col_output;
    }
    else if(_append_bias)
    {
        // Configure add bias kernel
        _add_bias_kernel.configure(ArithmeticOperation::ADD, output, biases, output, ConvertPolicy::SATURATE);
    }

    // Create GEMM output tensor
    if(!_skip_col2im)
    {
        TensorShape shape_gemm;

        // If we cannot skip col2im it means we run im2col as well
        shape_gemm = _im2col_output.info()->tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);

        // TODO(COMPMID-2078): input->clone() doesn't work with subtensors for grouped convolutions.
        TensorInfo info_gemm(shape_gemm, 1, data_type);
        info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout());
        _gemm_output.allocator()->init(info_gemm);
        _memory_group.manage(&_gemm_output);

        // Update GEMM output
        gemm_output_to_use = &_gemm_output;
    }

    GEMMLowpOutputStageInfo gemmlowp_output_stage;
    gemmlowp_output_stage.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
    gemmlowp_output_stage.gemmlowp_offset     = 0;
    gemmlowp_output_stage.gemmlowp_multiplier = 0;
    gemmlowp_output_stage.gemmlowp_shift      = 0;

    // Configure output stage for quantized case
    if(_is_quantized)
    {
        const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();

        const float multiplier        = (input->info()->quantization_info().scale * weights->info()->quantization_info().scale) / output_quant_info.scale;
        int         output_multiplier = 0;
        int         output_shift      = 0;
        quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);

        int min_activation = 0;
        int max_activation = 0;

        const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
                                                                                 };

        if(_is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0)
        {
            const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
            const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);

            min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
            max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;

            // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation
            _is_activationlayer_enabled = false;
        }

        // Set the GEMMLowp output stage info
        gemmlowp_output_stage.gemmlowp_offset     = output_quant_info.offset;
        gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
        gemmlowp_output_stage.gemmlowp_shift      = output_shift;
        gemmlowp_output_stage.gemmlowp_min_bound  = min_activation;
        gemmlowp_output_stage.gemmlowp_max_bound  = max_activation;
    }

    // Configure and tune GEMM
    // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
    const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;

    configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth);

    if(!_skip_im2col)
    {
        _im2col_output.allocator()->allocate();
    }

    if(!_skip_col2im)
    {
        // Configure and tune Col2Im
        _col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups);
        CLScheduler::get().tune_kernel_static(_col2im_kernel);
    }

    if(!_skip_col2im)
    {
        _gemm_output.allocator()->allocate();
    }

    ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h),
                             "Output shape does not match the expected one");

    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.configure(output, nullptr, act_info);
    }

    ARM_COMPUTE_UNUSED(weights_info);
}

Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                        const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8");
    ARM_COMPUTE_RETURN_ERROR_ON(((input->dimension(2) / weights->dimension(2)) != num_groups) && (input->data_layout() == DataLayout::NCHW));

    const DataLayout data_layout = input->data_layout();
    const DataType   data_type   = input->data_type();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);

    TensorInfo         im2col_reshaped_info, info_gemm, weights_reshaped_info;
    const ITensorInfo *gemm_input_to_use  = input;
    const ITensorInfo *gemm_output_to_use = output;
    const ITensorInfo *weights_to_use     = weights;

    const bool is_quantized               = is_data_type_quantized_asymmetric(data_type);
    const bool append_bias                = (biases != nullptr) && (!is_quantized);
    const bool skip_im2col                = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
    const bool skip_col2im                = data_layout == DataLayout::NHWC;
    bool       is_activationlayer_enabled = act_info.enabled();
    // In case of F16, fused bias will be used in GEMM
    const bool run_addition = (skip_im2col) && (append_bias) && (data_type != DataType::F16);

    ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel));
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    // Validate biases
    if(biases != nullptr)
    {
        if(is_quantized)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
        }
        ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    if(act_info.enabled())
    {
        ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a());
    }

    // Get convolved dimensions
    unsigned int conv_w = 0;
    unsigned int conv_h = 0;

    std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width),
                                                 input->dimension(idx_height),
                                                 kernel_width,
                                                 kernel_height,
                                                 conv_info,
                                                 dilation);

    unsigned int mat_weights_cols = weights->dimension(idx_kernels) / num_groups;

    // Output tensor auto inizialitation if not yet initialized
    ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, is_quantized ? nullptr : biases, nullptr, num_groups));
    weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, (append_bias && !skip_im2col), num_groups), 1, data_type);
    weights_to_use        = &weights_reshaped_info;

    if(!skip_im2col)
    {
        const Size2D kernel_dims(kernel_width, kernel_height);

        // Output tensor auto initialization if not yet initialized
        TensorShape expected_output_shape = compute_im2col_conv_shape(input, kernel_dims, conv_info, append_bias, dilation, num_groups == 1, num_groups);

        auto_init_if_empty(im2col_reshaped_info, input->clone()->set_tensor_shape(expected_output_shape));

        ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &im2col_reshaped_info, kernel_dims, conv_info, append_bias, dilation, num_groups));
        gemm_input_to_use = &im2col_reshaped_info;
    }
    else if(run_addition)
    {
        // Validate add bias kernel
        ARM_COMPUTE_RETURN_ON_ERROR(CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::ADD, output, biases, output, ConvertPolicy::SATURATE));
    }

    // Create GEMM output tensor
    if(!skip_col2im)
    {
        TensorShape shape_gemm;

        shape_gemm = gemm_input_to_use->tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);

        info_gemm = TensorInfo(shape_gemm, 1, data_type);
        info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout());
        gemm_output_to_use = &info_gemm;
    }

    GEMMLowpOutputStageInfo gemmlowp_output_stage;
    gemmlowp_output_stage.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
    gemmlowp_output_stage.gemmlowp_offset     = 0;
    gemmlowp_output_stage.gemmlowp_multiplier = 0;
    gemmlowp_output_stage.gemmlowp_shift      = 0;

    if(is_quantized)
    {
        const QuantizationInfo output_quant_info = (output->total_size() == 0) ? input->quantization_info() : output->quantization_info();

        const float multiplier        = (input->quantization_info().scale * weights->quantization_info().scale) / output_quant_info.scale;
        int         output_multiplier = 0;
        int         output_shift      = 0;

        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));

        int min_activation = 0;
        int max_activation = 0;

        const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
                                                                                 };

        if(is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0)
        {
            const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
            const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);

            min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
            max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;

            // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation
            is_activationlayer_enabled = false;
        }

        // Set the GEMMLowp output stage info
        gemmlowp_output_stage.gemmlowp_offset     = output_quant_info.offset;
        gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
        gemmlowp_output_stage.gemmlowp_shift      = output_shift;
        gemmlowp_output_stage.gemmlowp_min_bound  = min_activation;
        gemmlowp_output_stage.gemmlowp_max_bound  = max_activation;
    }

    // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
    const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;

    ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, skip_im2col, run_addition));

    // Validate Col2Im
    if(!skip_col2im)
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups));
    }

    //Validate Activation Layer
    if(is_activationlayer_enabled)
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
    }

    return Status{};
}

void CLGEMMConvolutionLayer::run()
{
    prepare();

    _memory_group.acquire();

    // Run im2col
    if(!_skip_im2col)
    {
        CLScheduler::get().enqueue(_im2col_kernel);
    }

    // Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions
    if(_is_quantized)
    {
        // Run gemmlowp
        _mm_gemmlowp.run();
    }
    else
    {
        // Run gemm
        _mm_gemm.run();
    }

    if(_run_addition)
    {
        CLScheduler::get().enqueue(_add_bias_kernel);
    }

    // Reshape output matrix
    if(!_skip_col2im)
    {
        CLScheduler::get().enqueue(_col2im_kernel, false);
    }

    //Run Activation Layer if enabled
    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.run();
    }

    _memory_group.release();
}

void CLGEMMConvolutionLayer::prepare()
{
    if(!_is_prepared)
    {
        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

        // Run weights reshaping and mark original weights tensor as unused
        _weights_reshaped.allocator()->allocate();
        _reshape_weights.run();
        _original_weights->mark_as_unused();

        // Prepare GEMM
        _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare();
        if(!_weights_reshaped.is_used())
        {
            _weights_reshaped.allocator()->free();
        }

        CLScheduler::get().queue().finish();
        _is_prepared = true;
    }
}