aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
blob: 8211104bda5517dde5c5e7ca28bb56a769453cb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h"

#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "support/ToolchainSupport.h"

namespace arm_compute
{
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;

CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _reshape_weights(), _permuted_input(),
      _permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _needs_weights_reshape(false), _is_prepared(false)
{
}

void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
                                               ActivationLayerInfo act_info, const Size2D &dilation)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    // idx_w and idx_h only used for validation
    const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_UNUSED(idx_w);
    ARM_COMPUTE_UNUSED(idx_h);

    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC;

    _needs_permute         = is_nhwc && (depth_multiplier > 1);
    _needs_weights_reshape = is_nhwc && (depth_multiplier == 1)
                             && is_data_type_quantized_asymmetric(input->info()->data_type());
    _is_prepared      = false;
    _original_weights = weights;

    ICLTensor       *input_to_use   = input;
    const ICLTensor *weights_to_use = weights;
    ICLTensor       *output_to_use  = output;

    const bool is_stride_1            = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
    const bool is_dot8_supported      = dot8_supported(CLKernelLibrary::get().get_device());
    const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);

    DepthwiseConvolutionReshapeInfo info;
    info.c0        = 4;
    info.transpose = is_stride_1_dilation_1 && is_dot8_supported;

    if(_needs_permute)
    {
        _memory_group.manage(&_permuted_input);
        _memory_group.manage(&_permuted_output);

        // Configure the function to transform the input tensor from NHWC -> NCHW
        _permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
        _permuted_input.info()->set_data_layout(DataLayout::NCHW);

        // Configure the function to transform the weights tensor from HWI -> IHW
        _permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
        _permuted_weights.info()->set_data_layout(DataLayout::NCHW);

        input_to_use   = &_permuted_input;
        weights_to_use = &_permuted_weights;
        output_to_use  = &_permuted_output;

        _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
    }
    else if(is_nhwc)
    {
        if(_needs_weights_reshape)
        {
            _reshape_weights.configure(weights, &_permuted_weights, info);
            weights_to_use = &_permuted_weights;
        }
        _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
    }
    else
    {
        _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
    }

    // Configure kernel
    _kernel->set_target(CLScheduler::get().target());
    _kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info, dilation);

    // Permute output if needed
    if(_needs_permute)
    {
        // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
        _permuted_output.info()->set_data_layout(DataLayout::NCHW);
        _permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));

        // Allocate tensors
        _permuted_input.allocator()->allocate();
        _permuted_output.allocator()->allocate();
    }
    // Configure border handler
    PixelValue &&zero_value(0.f);
    if(is_data_type_quantized_asymmetric(input->info()->data_type()))
    {
        zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().offset));
    }
    _border_handler.configure(input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value);
}

Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                                unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);

    const bool                      is_nhwc                = input->data_layout() == DataLayout::NHWC;
    const bool                      needs_permute          = is_nhwc && (depth_multiplier > 1);
    const bool                      needs_weights_reshape  = is_nhwc && (depth_multiplier == 1);
    const bool                      is_stride_1            = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
    const bool                      is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
    const bool                      is_dot8_supported      = dot8_supported(CLKernelLibrary::get().get_device());
    DepthwiseConvolutionReshapeInfo info;
    info.c0        = 4;
    info.transpose = is_stride_1_dilation_1 && is_dot8_supported;

    if(needs_permute)
    {
        TensorShape permuted_input_shape   = input->tensor_shape();
        TensorShape permuted_weights_shape = weights->tensor_shape();
        TensorShape permuted_output_shape  = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);

        permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
        permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
        permute(permuted_output_shape, PermutationVector(1U, 2U, 0U));

        const TensorInfo permuted_input   = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW);
        const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW);
        const TensorInfo permuted_output  = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);

        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target,
                                                                                       dilation));
    }
    else if(is_nhwc)
    {
        if(needs_weights_reshape)
        {
            auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info);
            ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases, output, conv_info, depth_multiplier,
                                                                                           act_info, dilation));
        }
        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation));
    }
    else
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation));
    }

    return Status{};
}

void CLDepthwiseConvolutionLayer3x3::run()
{
    prepare();

    MemoryGroupResourceScope scope_mg(_memory_group);

    if(_needs_permute)
    {
        _permute_input_to_nchw.run();
    }
    CLScheduler::get().enqueue(_border_handler);
    CLScheduler::get().enqueue(*_kernel);

    if(_needs_permute)
    {
        _permute_output_to_nhwc.run();
    }
}

void CLDepthwiseConvolutionLayer3x3::prepare()
{
    if(!_is_prepared)
    {
        if(_needs_permute)
        {
            ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

            _permuted_weights.allocator()->allocate();
            _permute_weights_to_nchw.run();
            _original_weights->mark_as_unused();
        }

        if(_needs_weights_reshape)
        {
            ARM_COMPUTE_ERROR_ON(_needs_permute);
            ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
            _permuted_weights.allocator()->allocate();
            CLScheduler::get().enqueue(_reshape_weights);
            _original_weights->mark_as_unused();
        }
        _is_prepared = true;
    }
}

CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer()
    : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _activationlayer_function(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(),
      _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _is_activationlayer_enabled(false), _original_weights(nullptr),
      _optimised_function(nullptr)
{
}

void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
                                            unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);

    const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    const bool can_run_optimised_3x3_kernel = (weights->info()->dimension(idx_w) == 3) && (weights->info()->dimension(idx_h) == 3);

    if(bool(can_run_optimised_3x3_kernel))
    {
        auto f = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3>();
        f->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
        _optimised_function = std::move(f);
    }
    else
    {
        const size_t idx_c = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL);

        const size_t weights_w = weights->info()->dimension(idx_w);
        const size_t weights_h = weights->info()->dimension(idx_h);
        const size_t weights_z = weights->info()->dimension(idx_c);

        _is_prepared      = false;
        _original_weights = weights;
        _is_quantized     = is_data_type_quantized_asymmetric(input->info()->data_type());

        bool            append_bias = (biases != nullptr) && !_is_quantized;
        const GPUTarget gpu_target  = CLScheduler::get().target();

        // Calculate output shape
        TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation);

        // Output auto inizialitation if not yet initialized
        auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
        ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);

        // Output width and height
        const unsigned int conv_w = output_shape[idx_w];
        const unsigned int conv_h = output_shape[idx_h];

        // Set up intermediate tensors
        const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0);
        const size_t conv_size  = conv_w * conv_h;

        // Im2Col configuration
        TensorShape shape_im2col = input->info()->tensor_shape();
        shape_im2col.set(0, patch_size);
        shape_im2col.set(1, conv_size);
        shape_im2col.set(2, weights_z);
        _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
        _im2col_kernel.set_target(gpu_target);
        _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation);
        CLScheduler::get().tune_kernel_static(_im2col_kernel);

        // Weights reshape configuration
        const TensorShape shape_weights_reshape(patch_size, weights_z);
        _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
        _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr);

        // GEMV configuration
        DataType    v2mm_dt        = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
        TensorShape shape_v2mm_out = input->info()->tensor_shape();
        shape_v2mm_out.set(0, conv_size * weights_z);
        shape_v2mm_out.set(1, 1);
        shape_v2mm_out.set(2, 1);
        _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
        _v2mm_kernel.set_target(gpu_target);
        _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
        CLScheduler::get().tune_kernel_static(_v2mm_kernel);
        _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
        _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h);

        // Output staged configuration
        if(_is_quantized)
        {
            const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();

            float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
            int   output_multiplier, output_shift;
            quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
            _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset);
            _output_reshaped.allocator()->allocate();
        }

        // Fill borders on inputs
        PixelValue zero_in(static_cast<int32_t>(0));
        PixelValue zero_w(static_cast<int32_t>(0));
        if(_is_quantized)
        {
            zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().offset));
            zero_w  = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().offset));
        }
        BorderSize border_size = _v2mm_kernel.border_size();
        _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);

        border_size.bottom = 0;
        _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);

        // Allocate intermediate tensors
        _input_reshaped.allocator()->allocate();
        _v2mm_output.allocator()->allocate();

        //Configure Activation Layer
        _is_activationlayer_enabled = act_info.enabled();

        if(_is_activationlayer_enabled)
        {
            _activationlayer_function.configure(output, nullptr, act_info);
        }
    }
}

Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                             unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
    const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    const bool can_run_optimised_3x3_kernel = (weights->dimension(idx_w) == 3) && (weights->dimension(idx_h) == 3);

    if(can_run_optimised_3x3_kernel)
    {
        const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);

        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
        ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(idx_c) * depth_multiplier) != weights->dimension(idx_c));

        const bool         is_quantized = is_data_type_quantized_asymmetric(input->data_type());
        const bool         append_bias  = (biases != nullptr) && !is_quantized;
        const TensorShape  output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
        const size_t       weights_w    = weights->dimension(idx_w);
        const size_t       weights_h    = weights->dimension(idx_h);
        const size_t       weights_z    = weights->dimension(idx_c);
        const unsigned int conv_w       = output_shape[idx_w];
        const unsigned int conv_h       = output_shape[idx_h];
        const size_t       patch_size   = weights_w * weights_h + ((append_bias) ? 1 : 0);
        const size_t       conv_size    = conv_w * conv_h;

        TensorShape shape_im2col = input->tensor_shape();
        shape_im2col.set(0, patch_size);
        shape_im2col.set(1, conv_size);
        shape_im2col.set(2, weights_z);
        TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation));

        const TensorShape shape_weights_reshape(patch_size, weights_z);
        TensorInfo        weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr));

        DataType    v2mm_dt        = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();
        TensorShape shape_v2mm_out = input->tensor_shape();
        shape_v2mm_out.set(0, conv_size * weights_z);
        shape_v2mm_out.set(1, 1);
        shape_v2mm_out.set(2, 1);
        TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output));

        TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
        ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h));

        if(is_quantized)
        {
            ARM_COMPUTE_RETURN_ON_ERROR(CLDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output));
        }

        // Validate Activation Layer
        if(act_info.enabled())
        {
            ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
        }
    }
    else
    {
        CLDepthwiseConvolutionLayer3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, GPUTarget::MIDGARD, dilation);
    }
    return Status{};
}

void CLDepthwiseConvolutionLayer::run()
{
    prepare();

    if(_optimised_function != nullptr)
    {
        _optimised_function->run();
    }
    else
    {
        CLScheduler::get().enqueue(_im2col_kernel);
        CLScheduler::get().enqueue(_v2mm_input_fill_border);
        CLScheduler::get().enqueue(_v2mm_kernel);
        CLScheduler::get().enqueue(_vector_to_tensor_kernel);
        if(_is_quantized)
        {
            CLScheduler::get().enqueue(_output_stage_kernel);
        }
        if(_is_activationlayer_enabled)
        {
            _activationlayer_function.run();
        }
    }
}

void CLDepthwiseConvolutionLayer::prepare()
{
    if(_optimised_function != nullptr)
    {
        _optimised_function->prepare();
    }
    else
    {
        if(!_is_prepared)
        {
            ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

            // Run weights reshaping and mark original weights tensor as unused
            _weights_reshaped.allocator()->allocate();
            CLScheduler::get().enqueue(_weights_reshape_kernel);
            CLScheduler::get().enqueue(_v2mm_weights_fill_border);
            _original_weights->mark_as_unused();

            CLScheduler::get().queue().finish();
            _is_prepared = true;
        }
    }
}
} // namespace arm_compute