aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/nchw/all.cpp
blob: 0602bea66776b26159f08aff96fe0b7e9d998b45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * Copyright (c) 2021-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/cpu/kernels/pool2d/neon/impl.h"
#include "src/cpu/kernels/pool2d/neon/list.h"

#include <limits>

#ifdef ENABLE_NCHW_KERNELS
namespace arm_compute
{
namespace cpu
{
#define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
    (x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
#define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
    (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1)              \
                        : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)                   \
    ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) \
        ? vdup_n_f32(fval)                                                                         \
        : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)

#define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)           \
    vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
                 READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))

float32x4x2_t
read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
{
    float32x4x2_t vec;
    vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
    vec.val[1] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 4), y, (ptr + 4), fval);
    return vec;
}

void poolingMxN_fp32_neon_nchw(const ITensor    *src,
                               ITensor          *dst0,
                               ITensor          *dst1,
                               PoolingLayerInfo &pool_info,
                               const Window     &window_src,
                               const Window     &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x                = 0;
    int       pool_stride_y                = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int   src_w                      = src->info()->dimension(0);
    const int   src_h                      = src->info()->dimension(1);
    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            float res = 0.0f;

            if (pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                const float scale = calculate_avg_scale_pool2d(
                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
                    upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);

                // Perform pooling
                for (int y = 0; y < pool_size_y; ++y)
                {
                    for (int x = 0; x < pool_size_x; ++x)
                    {
                        const auto ptr = reinterpret_cast<const float *>(
                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));

                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
                        float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;

                        if (pool_info.pool_type == PoolingType::L2)
                        {
                            data *= data;
                        }

                        res += data;
                    }
                }

                // Divide by scale
                res *= scale;
            }
            else // if max pooling
            {
                res = min_value;

                for (int y = 0; y < pool_size_y; ++y)
                {
                    for (int x = 0; x < pool_size_x; ++x)
                    {
                        const auto ptr = reinterpret_cast<const float *>(
                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));

                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
                        float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
                        res            = std::max(res, data);
                    }
                }
            }

            // Calculate square-root in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                res = std::sqrt(res);
            }

            // Store result
            *(reinterpret_cast<float *>(out.ptr())) = res;
        },
        in, out);
}

void pooling2_fp32_neon_nchw(const ITensor    *src,
                             ITensor          *dst0,
                             ITensor          *dst1,
                             PoolingLayerInfo &pool_info,
                             const Window     &window_src,
                             const Window     &window)
{
    if (pool_info.pool_type == PoolingType::MAX && dst1)
    {
        pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
    }
    else
    {
        Iterator      in(src, window_src);
        Iterator      out(dst0, window);
        constexpr int pool_size                = 2;
        const int     pool_pad_right           = pool_info.pad_stride_info.pad_right();
        const int     pool_pad_top             = pool_info.pad_stride_info.pad_top();
        const int     pool_pad_left            = pool_info.pad_stride_info.pad_left();
        const int     pool_pad_bottom          = pool_info.pad_stride_info.pad_bottom();
        int           pool_stride_x            = 0;
        int           pool_stride_y            = 0;
        std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
        const int   src_w                      = src->info()->dimension(0);
        const int   src_h                      = src->info()->dimension(1);
        const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
        const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
        const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
        const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;

        const uint8_t *const src_top_ptr =
            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
        const uint8_t *const src_bottom_ptr =
            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));

        execute_window_loop(
            window,
            [&](const Coordinates &id)
            {
                const auto in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
                const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());

                const auto x_val      = id.x() * pool_stride_x;
                const auto y_val_0    = id.y() * pool_stride_y;
                const auto y_val_1    = (id.y() * pool_stride_y) + 1;
                auto       top_data   = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0,
                                                              in_top_ptr, fill_value);
                auto bottom_data      = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
                                                              in_bottom_ptr, fill_value);
                float32x2_t res       = {};
                float       final_res = 0;

                // Get power of 2 in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    top_data    = vmul_f32(top_data, top_data);
                    bottom_data = vmul_f32(bottom_data, bottom_data);
                }

                if (pool_info.pool_type != PoolingType::MAX)
                {
                    // Calculate scale
                    float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
                                                             pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
                                                             pool_pad_top, pool_stride_x, pool_stride_y);
                    const float32x2_t scale_v = vdup_n_f32(scale);

                    // Perform pooling
                    const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
                    res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
                }
                else
                {
                    const float32x2_t max_data = vmax_f32(top_data, bottom_data);
                    res                        = vpmax_f32(max_data, max_data);
                }
                final_res = vget_lane_f32(res, 0);

                // Calculate square-root in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    final_res = sqrt(final_res);
                }

                // Store result
                *(reinterpret_cast<float *>(out.ptr())) = final_res;
            },
            in, out);
    }
}

void pooling3_fp32_neon_nchw(const ITensor    *src,
                             ITensor          *dst0,
                             ITensor          *dst1,
                             PoolingLayerInfo &pool_info,
                             const Window     &window_src,
                             const Window     &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size          = 3;
    const int           pool_pad_right     = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top       = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left      = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom    = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x      = 0;
    int                 pool_stride_y      = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int   src_w                      = src->info()->dimension(0);
    const int   src_h                      = src->info()->dimension(1);
    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;

    const uint8_t *const src_top_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const uint8_t *const src_middle_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const uint8_t *const src_bottom_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            const auto in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
            const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
            const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());

            const auto x_val   = id.x() * pool_stride_x;
            const auto y_val_0 = id.y() * pool_stride_y;
            const auto y_val_1 = (id.y() * pool_stride_y) + 1;
            const auto y_val_2 = (id.y() * pool_stride_y) + 2;
            auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr,
                                                  fill_value);
            auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
                                                     in_middle_ptr, fill_value);
            auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2,
                                                     in_bottom_ptr, fill_value);

            float32x2_t res       = {};
            float       final_res = 0;

            // Get power of 2 in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                top_data    = vmulq_f32(top_data, top_data);
                middle_data = vmulq_f32(middle_data, middle_data);
                bottom_data = vmulq_f32(bottom_data, bottom_data);
            }

            if (pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
                                                         pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
                                                         pool_pad_top, pool_stride_x, pool_stride_y);
                const float32x2_t scale_v = vdup_n_f32(scale);

                // Perform pooling
                const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
                res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
                res = vmul_f32(vpadd_f32(res, res), scale_v);
            }
            else
            {
                const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
                res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
                res = vpmax_f32(res, res);
            }
            final_res = vget_lane_f32(res, 0);

            // Calculate square-root in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                final_res = sqrt(final_res);
            }

            // Store result
            *(reinterpret_cast<float *>(out.ptr())) = final_res;
        },
        in, out);
}

void pooling7_fp32_neon_nchw(const ITensor    *src,
                             ITensor          *dst0,
                             ITensor          *dst1,
                             PoolingLayerInfo &pool_info,
                             const Window     &window_src,
                             const Window     &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size          = 7;
    const int           pool_pad_right     = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top       = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left      = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom    = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x      = 0;
    int                 pool_stride_y      = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int   src_w                      = src->info()->dimension(0);
    const int   src_h                      = src->info()->dimension(1);
    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;

    std::array<const uint8_t *, pool_size> src_ptrs{{}};
    for (int i = 0; i < pool_size; ++i)
    {
        src_ptrs[i] =
            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
    }

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());

            auto          x_val = id.x() * pool_stride_x;
            auto          y_val = id.y() * pool_stride_y;
            float32x4x2_t data =
                read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);

            float32x2_t res       = {};
            float       final_res = 0.f;

            if (pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
                                                         pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
                                                         pool_pad_top, pool_stride_x, pool_stride_y);
                const float32x2_t scale_v = vdup_n_f32(scale);

                // Get power of 2 in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    data.val[0] = vmulq_f32(data.val[0], data.val[0]);
                    data.val[1] = vmulq_f32(data.val[1], data.val[1]);
                }
                float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
                for (int i = 1; i < pool_size; ++i)
                {
                    in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());

                    x_val = id.x() * pool_stride_x;
                    y_val = (id.y() * pool_stride_y) + i;
                    data  = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr,
                                                  fill_value);
                    // Get power of 2 in case of l2 pooling
                    if (pool_info.pool_type == PoolingType::L2)
                    {
                        data.val[0] = vmulq_f32(data.val[0], data.val[0]);
                        data.val[1] = vmulq_f32(data.val[1], data.val[1]);
                    }
                    sum_data = vaddq_f32(sum_data, data.val[0]);
                    sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
                }
                res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
                res = vmul_f32(vpadd_f32(res, res), scale_v);
            }
            else
            {
                for (int i = 1; i < pool_size; ++i)
                {
                    in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());

                    x_val              = id.x() * pool_stride_x;
                    y_val              = (id.y() * pool_stride_y) + i;
                    float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val,
                                                               in_ptr, fill_value);
                    data               = vmax2q_f32(data, temp);
                }
                res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
                res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
                res = vpmax_f32(res, res);
            }
            final_res = vget_lane_f32(res, 0);

            // Calculate square-root in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                final_res = sqrt(final_res);
            }

            // Store result
            *(reinterpret_cast<float *>(out.ptr())) = final_res;
        },
        in, out);
}
} // namespace cpu
} // namespace arm_compute

#endif // ENABLE_NCHW_KERNELS