aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/impl.h
blob: 008cf651e136d378ad8aa76df3c10150b818f8bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * Copyright (c) 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H
#define ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/cpu/kernels/pool2d/neon/list.h"

#include <limits>

#ifdef ENABLE_NCHW_KERNELS
namespace arm_compute
{
namespace cpu
{

namespace
{
template <typename T>
auto read_2_boundary_aware_as_f32(int srcw, int srch, int pad_l, int pad_t, int x, int y, const T *ptr, T fval)
{
    T          vec[2];
    const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
    for (int i = 0; i < 2; i++)
    {
        if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
        {
            vec[i] = *(ptr + i);
        }
        else
        {
            vec[i] = fval;
        }
    }
    float32_t vec_f32[2] = {vec[0], vec[1]};
    return wrapper::vload(vec_f32);
}
} // namespace

template <typename T>
void pooling2_nchw_maxpool_indices(const ITensor    *src,
                                   ITensor          *dst0,
                                   ITensor          *dst1,
                                   PoolingLayerInfo &pool_info,
                                   const Window     &window_src,
                                   const Window     &window)
{
    Iterator  in(src, window_src);
    Iterator  out(dst0, window);
    Iterator  indices(dst1, window);
    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
    int       pool_stride_x                = 0;
    int       pool_stride_y                = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int            src_w             = src->info()->dimension(0);
    const int            src_h             = src->info()->dimension(1);
    const uint8_t *const src_top_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const uint8_t *const src_bottom_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const int pad_left    = src->info()->padding().left;
    const int pad_right   = src->info()->padding().right;
    const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
    const T   float_min   = get_initial_min<T>(pool_info.use_inf_as_limit);
    const T   fill_value  = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            const auto x_val   = id.x() * pool_stride_x;
            const auto y_val_0 = id.y() * pool_stride_y;
            const auto y_val_1 = (id.y() * pool_stride_y) + 1;
            auto       top_data =
                read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
                                             reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
            auto bottom_data =
                read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
                                             reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);

            // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
            const float32x2_t max_data_top      = vpmax_f32(top_data, top_data);
            const float32x2_t max_data_bottom   = vpmax_f32(bottom_data, bottom_data);
            const float32x2_t max_data          = vmax_f32(max_data_top, max_data_bottom);
            *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));

            // Calculate max data indice, which will be used in max unpool.
            const uint32_t offset_base =
                offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
            const uint32_t   offset_top     = (uint32_t)(offset_base / sizeof(T));
            const uint32_t   offset_bottom  = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
            const uint32x2_t voffset_top    = {offset_top, offset_top + 1u};
            const uint32x2_t voffset_bottom = {offset_bottom, offset_bottom + 1u};
            const uint32x2_t tmp_indices_top =
                vbsl_u32(vcge_f32(top_data, vrev64_f32(top_data)), voffset_top, vrev64_u32(voffset_top));
            const uint32x2_t tmp_indices_bottom =
                vbsl_u32(vcge_f32(bottom_data, vrev64_f32(bottom_data)), voffset_bottom, vrev64_u32(voffset_bottom));
            *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(
                vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
        },
        in, out, indices);
}

} // namespace cpu
} // namespace arm_compute

#endif // ENABLE_NCHW_KERNELS

#endif // ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H