aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/pooling/neon/nchw/all.cpp
blob: 47ac7b4f7f1cf77b405edd792f671671cc26069e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/core/cpu/kernels/pooling/neon/list.h"
#include "src/core/helpers/WindowHelpers.h"

#ifdef ENABLE_NCHW_KERNELS
namespace arm_compute
{
namespace cpu
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    ARM_COMPUTE_UNUSED(pool_info.pool_type);
    ARM_COMPUTE_UNUSED(pool_info.exclude_padding);

    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size       = 3;
    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x   = 0;
    int                 pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const unsigned char *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()));
        float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()));
        float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()));
        float16x4_t res         = {};

        // Get power of 2 in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            top_data    = vmul_f16(top_data, top_data);
            middle_data = vmul_f16(middle_data, middle_data);
            bottom_data = vmul_f16(bottom_data, bottom_data);
        }

        if(pool_info.pool_type != PoolingType::MAX)
        {
            // Calculate scale
            const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                    pool_stride_y);
            const float16x4_t scale_v = vdup_n_f16(scale);
            // Perform pooling
            const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
            res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
            res                        = vmul_f16(vpadd_f16(res, res), scale_v);
        }
        else
        {
            const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
            res                        = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
            res                        = vpmax_f16(res, res);
        }

        // Calculate square-root in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            res = vinv_f16(vinvsqrt_f16(res));
        }

        *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
    },
    in, out);
}

template <typename T>
inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
f16_to_f32(float16x4_t in)
{
    float32x2_t out = { static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1)) };
    return out;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

template <typename T>
inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
f16_to_f32(float32x2_t in)
{
    return in;
}

template <typename T>
void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    Iterator  in(src, window_src);
    Iterator  out(dst0, window);
    Iterator  indices(dst1, window);
    const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left = pool_info.pad_stride_info.pad_left();
    int       pool_stride_x = 0;
    int       pool_stride_y = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const int            pad_left       = src->info()->padding().left;
    const int            pad_right      = src->info()->padding().right;
    const int            in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());

    execute_window_loop(window, [&](const Coordinates & id)
    {
        auto        top_data        = wrapper::vload(reinterpret_cast<const T *>(src_top_ptr + in.offset()));
        auto        bottom_data     = wrapper::vload(reinterpret_cast<const T *>(src_bottom_ptr + in.offset()));
        float32x2_t top_data_f32    = f16_to_f32<T>(top_data);
        float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);

        // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
        const float32x2_t max_data_top      = vpmax_f32(top_data_f32, top_data_f32);
        const float32x2_t max_data_bottom   = vpmax_f32(bottom_data_f32, bottom_data_f32);
        const float32x2_t max_data          = vmax_f32(max_data_top, max_data_bottom);
        *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));

        // Calculate max data indice, which will be used in max unpool.
        const uint32_t   offset_base              = offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y);
        const uint32_t   offset_top               = (uint32_t)(offset_base / sizeof(T));
        const uint32_t   offset_bottom            = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
        const uint32x2_t voffset_top              = { offset_top, offset_top + 1u };
        const uint32x2_t voffset_bottom           = { offset_bottom, offset_bottom + 1u };
        const uint32x2_t tmp_indices_top          = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
        const uint32x2_t tmp_indices_bottom       = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
        *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
    },
    in, out, indices);
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    if(pool_info.pool_type == PoolingType::MAX && dst1)
    {
        pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
    }
    else
    {
        Iterator      in(src, window_src);
        Iterator      out(dst0, window);
        constexpr int pool_size       = 2;
        const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
        const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
        const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
        const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
        int           pool_stride_x, pool_stride_y = 0;
        std::tie(pool_stride_x, pool_stride_y)     = pool_info.pad_stride_info.stride();
        const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
        const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

        const unsigned char *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
        const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));

        execute_window_loop(window, [&](const Coordinates & id)
        {
            float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()));
            float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()));
            float16x4_t res         = {};

            // Get power of 2 in case of l2 pooling
            if(pool_info.pool_type == PoolingType::L2)
            {
                top_data    = vmul_f16(top_data, top_data);
                bottom_data = vmul_f16(bottom_data, bottom_data);
            }

            if(pool_info.pool_type != PoolingType::MAX)
            {
                const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                        pool_stride_y);
                const float16x4_t scale_v = vdup_n_f16(scale);

                const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
                res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
            }
            else
            {
                const float16x4_t max_data = vmax_f16(top_data, bottom_data);
                res                        = vpmax_f16(max_data, max_data);
            }

            // Calculate square-root in case of l2 pooling
            if(pool_info.pool_type == PoolingType::L2)
            {
                res = vinv_f16(vinvsqrt_f16(res));
            }

            // Store result
            *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
        },
        in, out);
    }
}

void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x   = 0;
    int       pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        float16_t   res  = 0.0f;
        float16x8_t vres = vdupq_n_f16(0.0f);

        if(pool_info.pool_type != PoolingType::MAX)
        {
            // Calculate scale
            const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                    pool_stride_y);

            // Perform pooling

            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 8); x += 8)
                {
                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                           (src->info()->strides_in_bytes().y())));

                    // Get power of 2 in case of l2 pooling and accumulate
                    if(pool_info.pool_type == PoolingType::L2)
                    {
                        vres = vaddq_f16(vres, vmulq_f16(data, data));
                    }
                    else
                    {
                        vres = vaddq_f16(vres, data);
                    }
                }

                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
                                                                           + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y())));

                    // Get power of 2 in case of l2 pooling
                    if(pool_info.pool_type == PoolingType::L2)
                    {
                        data *= data;
                    }

                    res += data;
                }
            }

            // Reduction
            float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
            res += vget_lane_f16(tmp, 0);
            res += vget_lane_f16(tmp, 1);
            res += vget_lane_f16(tmp, 2);
            res += vget_lane_f16(tmp, 3);

            // Divide by scale
            res *= scale;
        }
        else
        {
            float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
            res              = std::numeric_limits<float>::lowest();

            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 8); x += 8)
                {
                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                           (src->info()->strides_in_bytes().y())));
                    vres                   = vmaxq_f16(vres, data);
                }

                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    const float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
                                                                                 + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y())));
                    res = std::max(res, data);
                }
            }

            float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
            res             = std::max(res, vget_lane_f16(tmp, 0));
            res             = std::max(res, vget_lane_f16(tmp, 1));
            res             = std::max(res, vget_lane_f16(tmp, 2));
            res             = std::max(res, vget_lane_f16(tmp, 3));
        }

        // Calculate square-root in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            res = std::sqrt(res);
        }

        // Store result
        *(reinterpret_cast<float16_t *>(out.ptr())) = res;
    },
    in, out);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x   = 0;
    int       pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        float res = 0.0f;

        if(pool_info.pool_type != PoolingType::MAX)
        {
            // Calculate scale
            const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                    pool_stride_y);

            // Perform pooling
            float32x4_t vres = vdupq_n_f32(0.0f);

            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 4); x += 4)
                {
                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                       (src->info()->strides_in_bytes().y())));

                    // Get power of 2 in case of l2 pooling and accumulate
                    if(pool_info.pool_type == PoolingType::L2)
                    {
                        vres = vmlaq_f32(vres, data, data);
                    }
                    else
                    {
                        vres = vaddq_f32(vres, data);
                    }
                }

                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                   (src->info()->strides_in_bytes().y())));

                    // Get power of 2 in case of l2 pooling
                    if(pool_info.pool_type == PoolingType::L2)
                    {
                        data *= data;
                    }

                    res += data;
                }
            }

#if defined(__aarch64__)
            // Reduction operation available on 64 bit architectures only
            res += vaddvq_f32(vres);
#else  // __aarch64__
            // Reduction
            float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
            tmp             = vpadd_f32(tmp, tmp);

            res += vget_lane_f32(tmp, 0);
#endif // __aarch64__
            // Divide by scale
            res *= scale;
        }
        else
        {
            float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
            res              = std::numeric_limits<float>::lowest();

            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 4); x += 4)
                {
                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                       (src->info()->strides_in_bytes().y())));
                    vres                   = vmaxq_f32(vres, data);
                }

                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    const float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                         (src->info()->strides_in_bytes().y())));
                    res              = std::max(res, data);
                }
            }
#if defined(__aarch64__)
            // Reduction operation available on 64 bit architectures only
            res = std::max(vmaxvq_f32(vres), res);
#else  // __aarch64__
            float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
            tmp             = vpmax_f32(tmp, tmp);

            res = std::max(res, vget_lane_f32(tmp, 0));
#endif // __aarch64__
        }

        // Calculate square-root in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            res = std::sqrt(res);
        }

        // Store result
        *(reinterpret_cast<float *>(out.ptr())) = res;
    },
    in, out);
}

void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    if(pool_info.pool_type == PoolingType::MAX && dst1)
    {
        pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
    }
    else
    {
        Iterator      in(src, window_src);
        Iterator      out(dst0, window);
        constexpr int pool_size       = 2;
        const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
        const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
        const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
        const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
        int           pool_stride_x   = 0;
        int           pool_stride_y   = 0;
        std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
        const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
        const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

        const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
        const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));

        execute_window_loop(window, [&](const Coordinates & id)
        {
            const auto  in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
            const auto  in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
            float32x2_t top_data      = vld1_f32(in_top_ptr);
            float32x2_t bottom_data   = vld1_f32(in_bottom_ptr);
            float32x2_t res           = {};
            float       final_res     = 0;
            // Get power of 2 in case of l2 pooling
            if(pool_info.pool_type == PoolingType::L2)
            {
                top_data    = vmul_f32(top_data, top_data);
                bottom_data = vmul_f32(bottom_data, bottom_data);
            }

            if(pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                  pool_stride_y);
                const float32x2_t scale_v = vdup_n_f32(scale);

                // Perform pooling
                const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
                res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
            }
            else
            {
                const float32x2_t max_data = vmax_f32(top_data, bottom_data);
                res                        = vpmax_f32(max_data, max_data);
            }
            final_res = vget_lane_f32(res, 0);

            // Calculate square-root in case of l2 pooling
            if(pool_info.pool_type == PoolingType::L2)
            {
                final_res = sqrt(final_res);
            }

            // Store result
            *(reinterpret_cast<float *>(out.ptr())) = final_res;
        },
        in, out);
    }
}

void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size       = 3;
    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x   = 0;
    int                 pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        float32x4_t top_data    = vld1q_f32(reinterpret_cast<const float *>(src_top_ptr + in.offset()));
        float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(src_middle_ptr + in.offset()));
        float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(src_bottom_ptr + in.offset()));
        float32x2_t res         = {};
        float       final_res   = 0;

        // Get power of 2 in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            top_data    = vmulq_f32(top_data, top_data);
            middle_data = vmulq_f32(middle_data, middle_data);
            bottom_data = vmulq_f32(bottom_data, bottom_data);
        }

        if(pool_info.pool_type != PoolingType::MAX)
        {
            // Calculate scale
            float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                              pool_stride_y);
            const float32x2_t scale_v = vdup_n_f32(scale);

            // Perform pooling
            const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
            res                        = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
            res                        = vmul_f32(vpadd_f32(res, res), scale_v);
        }
        else
        {
            const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
            res                        = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
            res                        = vpmax_f32(res, res);
        }
        final_res = vget_lane_f32(res, 0);

        // Calculate square-root in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            final_res = sqrt(final_res);
        }

        // Store result
        *(reinterpret_cast<float *>(out.ptr())) = final_res;
    },
    in, out);
}

void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size       = 7;
    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x   = 0;
    int                 pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    std::array<const uint8_t *, pool_size> src_ptrs{ {} };
    for(int i = 0; i < pool_size; ++i)
    {
        src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
    }

    execute_window_loop(window, [&](const Coordinates & id)
    {
        float32x2_t res       = {};
        float       final_res = 0.f;
        if(pool_info.pool_type != PoolingType::MAX)
        {
            // Calculate scale
            float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                              pool_stride_y);
            const float32x2_t scale_v = vdup_n_f32(scale);

            // Perform pooling
            float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + in.offset()));
            // Get power of 2 in case of l2 pooling
            if(pool_info.pool_type == PoolingType::L2)
            {
                data.val[0] = vmulq_f32(data.val[0], data.val[0]);
                data.val[1] = vmulq_f32(data.val[1], data.val[1]);
            }
            float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
            for(int i = 1; i < pool_size; ++i)
            {
                data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + in.offset()));
                // Get power of 2 in case of l2 pooling
                if(pool_info.pool_type == PoolingType::L2)
                {
                    data.val[0] = vmulq_f32(data.val[0], data.val[0]);
                    data.val[1] = vmulq_f32(data.val[1], data.val[1]);
                }
                sum_data = vaddq_f32(sum_data, data.val[0]);
                sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
            }
            res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
            res = vmul_f32(vpadd_f32(res, res), scale_v);
        }
        else
        {
            float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + in.offset()));
            for(int i = 1; i < pool_size; ++i)
            {
                const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + in.offset()));
                max_data                 = vmax2q_f32(max_data, data);
            }
            res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
            res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
            res = vpmax_f32(res, res);
        }
        final_res = vget_lane_f32(res, 0);

        // Calculate square-root in case of l2 pooling
        if(pool_info.pool_type == PoolingType::L2)
        {
            final_res = sqrt(final_res);
        }

        // Store result
        *(reinterpret_cast<float *>(out.ptr())) = final_res;
    },
    in, out);
}
} // namespace cpu
} // namespace arm_compute

#endif // ENABLE_NCHW_KERNELS