aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/elementwise/sve/elementwise_quantized_list.h
blob: 6c5524e284c8203a8b3ff4f14e8571d4cc9ee1e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H
#define SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H

#if defined(__ARM_FEATURE_SVE2)

#include "src/core/NEON/wrapper/svtraits.h"
#include "src/core/cpu/kernels/elementwise/sve/elementwise_list.h"

namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::wrapper;

template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct QuantizedLoopArguments
{
    OperatorType           op;
    const InputScalarType *input1_ptr;
    const InputScalarType *input2_ptr;
    OutputScalarType      *output_ptr;

    const svint32_t   &in1_offset;
    const svint32_t   &in2_offset;
    const svint32_t   &out_offset;
    const svfloat32_t &in1_scale;
    const svfloat32_t &in2_scale;
    const svfloat32_t &out_scale;
};

template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct BroadcastQuantizedLoopArguments
{
    OperatorType           op;
    const InputScalarType *input1_ptr;
    float                  broadcast_value;
    OutputScalarType      *output_ptr;
    bool                   reorder;

    const svint32_t   &in1_offset;
    const svint32_t   &out_offset;
    const svfloat32_t &in1_scale;
    const svfloat32_t &out_scale;
};

svfloat32x4_t load_quantized(const int8_t *ptr, svbool_t pg, const svint32_t &offset, const svfloat32_t &scale)
{
    auto x = svld1(pg, ptr);

    const auto widened = svcreate4(
                             svmovlb(svmovlb(x)),
                             svmovlt(svmovlb(x)),
                             svmovlb(svmovlt(x)),
                             svmovlt(svmovlt(x)));

    pg = svptrue_b8();

    return svcreate4(
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 0), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 1), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 2), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 3), offset)), scale));
}

svfloat32x4_t load_quantized(const uint8_t *ptr, svbool_t pg, const svint32_t &offset, const svfloat32_t &scale)
{
    auto x = svld1(pg, ptr);

    //vprint(x);

    const auto widened = svcreate4(
                             svmovlb(svmovlb(x)),
                             svmovlt(svmovlb(x)),
                             svmovlb(svmovlt(x)),
                             svmovlt(svmovlt(x)));

    pg = svptrue_b8();

    return svcreate4(
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 0)), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 1)), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 2)), offset)), scale),
               svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 3)), offset)), scale));
}

void store_quantized(uint8_t *ptr, svbool_t pg, svfloat32x4_t data, const svint32_t &offset, const svfloat32_t &inv_scale)
{
    const auto quantized = svcreate4(
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 0), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 1), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 2), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 3), inv_scale))), offset));

    const auto narrowed_bottom = svqxtunt(svqxtunb(svget4(quantized, 0)), svget4(quantized, 1));
    const auto narrowed_top    = svqxtunt(svqxtunb(svget4(quantized, 2)), svget4(quantized, 3));
    const auto narrowed        = svqxtnt(svqxtnb(narrowed_bottom), narrowed_top);
    svst1(pg, ptr, narrowed);
}

void store_quantized(int8_t *ptr, svbool_t pg, svfloat32x4_t data, const svint32_t &offset, const svfloat32_t &inv_scale)
{
    const auto quantized = svcreate4(
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 0), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 1), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 2), inv_scale))), offset),
                               svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 3), inv_scale))), offset));

    const auto narrowed_bottom = svqxtnt(svqxtnb(svget4(quantized, 0)), svget4(quantized, 1));
    const auto narrowed_top    = svqxtnt(svqxtnb(svget4(quantized, 2)), svget4(quantized, 3));
    const auto narrowed        = svqxtnt(svqxtnb(narrowed_bottom), narrowed_top);

    svst1(pg, ptr, narrowed);
}

template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_quantized_loop(svbool_t pg, const QuantizedLoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
    const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
    const auto in2 = load_quantized(args.input2_ptr, pg, args.in2_offset, args.in2_scale);

    const auto result = svcreate4(
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 0), svget4(in2, 0), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 1), svget4(in2, 1), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 2), svget4(in2, 2), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 3), svget4(in2, 3), args.op));

    store_quantized(args.output_ptr, pg, result, args.out_offset, args.out_scale);
}

template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_broadcast_quantized_loop(svbool_t pg, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
    const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
    const auto in2 = svcreate4(
                         svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value));

    const auto &af = args.reorder ? in2 : in1;
    const auto &bf = args.reorder ? in1 : in2;

    const auto result = svcreate4(
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 0), svget4(bf, 0), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 1), svget4(bf, 1), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 2), svget4(bf, 2), args.op),
                            elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 3), svget4(bf, 3), args.op));

    store_quantized(args.output_ptr, pg, result, args.out_offset, args.out_scale);
}

template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_quantized_loop(svbool_t pg, const QuantizedLoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
    const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
    const auto in2 = load_quantized(args.input2_ptr, pg, args.in2_offset, args.in2_scale);

    using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;

    const auto result = svcreate4(
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 0), svget4(in2, 0), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 1), svget4(in2, 1), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 2), svget4(in2, 2), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 3), svget4(in2, 3), args.op));

    const auto zipped_bottom = svzip1(svget4(result, 0), svget4(result, 1));
    const auto zipped_top    = svzip1(svget4(result, 2), svget4(result, 3));
    const auto zipped        = svzip1(zipped_bottom, zipped_top);
    svst1(pg, args.output_ptr, zipped);
}

template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_broadcast_quantized_loop(svbool_t pg, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
    const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
    const auto in2 = svcreate4(
                         svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value));

    const auto &af = args.reorder ? in2 : in1;
    const auto &bf = args.reorder ? in1 : in2;

    using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;

    const auto result = svcreate4(
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 0), svget4(bf, 0), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 1), svget4(bf, 1), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 2), svget4(bf, 2), args.op),
                            elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 3), svget4(bf, 3), args.op));

    const auto zipped_bottom = svzip1(svget4(result, 0), svget4(result, 1));
    const auto zipped_top    = svzip1(svget4(result, 2), svget4(result, 3));
    const auto zipped        = svzip1(zipped_bottom, zipped_top);
    svst1(pg, args.output_ptr, zipped);
}

template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using LoopQuantizedFuncType = void (*)(svbool_t, const QuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType> &);

template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using BroadcastQuantizedLoopFuncType = void (*)(svbool_t, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType> &);

template <typename InputVectorType, typename OutputVectorType, typename OperatorType,
          typename InputScalarType  = typename wrapper::sve_scalar<InputVectorType>::type,
          typename OutputScalarType = typename wrapper::sve_scalar<OutputVectorType>::type>
void elementwise_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                              OperatorType op,
                              LoopQuantizedFuncType<InputScalarType, OutputScalarType, OperatorType>          func,
                              BroadcastQuantizedLoopFuncType<InputScalarType, OutputScalarType, OperatorType> broadcast_func)
{
    const auto all_true_pg = wrapper::svptrue<InputScalarType>();

    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();

    const auto output_voffset = svdup_n(out->info()->quantization_info().uniform().offset);
    const auto output_vscale  = svdup_n(1.f / out->info()->quantization_info().uniform().scale);

    if(is_broadcast_across_x)
    {
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const auto non_broadcast_qinfo = is_broadcast_input_2 ? in1->info()->quantization_info() : in2->info()->quantization_info();
        const auto broadcast_qinfo     = is_broadcast_input_2 ? in2->info()->quantization_info() : in1->info()->quantization_info();

        const auto non_broadcast_voffset = svdup_n(non_broadcast_qinfo.uniform().offset);
        const auto non_broadcast_vscale  = svdup_n(non_broadcast_qinfo.uniform().scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            auto                  output_ptr              = reinterpret_cast<OutputScalarType *>(output.ptr());
            const auto            non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
            const InputScalarType broadcast_value         = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());

            int x = window_start_x;

            svbool_t pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
            do
            {
                const auto args = BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType>
                {
                    op,
                    non_broadcast_input_ptr + x,
                    Qasymm8QuantizationHelper<InputScalarType>::dequantize(broadcast_value, broadcast_qinfo),
                    output_ptr + x,
                    !is_broadcast_input_2,
                    non_broadcast_voffset, output_voffset,
                    non_broadcast_vscale, output_vscale
                };
                broadcast_func(pg, args);
                x += wrapper::svcnt<InputScalarType>();
                pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
            }
            while(svptest_any(all_true_pg, pg));
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        const auto in1_voffset = svdup_n(in1->info()->quantization_info().uniform().offset);
        const auto in1_vscale  = svdup_n(in1->info()->quantization_info().uniform().scale);

        const auto in2_voffset = svdup_n(in2->info()->quantization_info().uniform().offset);
        const auto in2_vscale  = svdup_n(in2->info()->quantization_info().uniform().scale);

        execute_window_loop(win, [&](const Coordinates &)
        {
            auto       output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
            const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());

            int x = window_start_x;

            svbool_t pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
            do
            {
                const auto args = QuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType>
                {
                    op,
                    input1_ptr + x,
                    input2_ptr + x,
                    output_ptr + x,
                    in1_voffset, in2_voffset, output_voffset,
                    in1_vscale, in2_vscale, output_vscale
                };
                func(pg, args);
                x += wrapper::svcnt<InputScalarType>();
                pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
            }
            while(svptest_any(all_true_pg, pg));
        },
        input1, input2, output);
    }
}

template <ArithmeticOperation op, typename ScalarType>
void elementwise_arithmetic_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    using VectorType = typename wrapper::traits::sve_vector<ScalarType>::type;
    elementwise_quantized_op<VectorType, VectorType, ArithmeticOperation>(in1, in2, out, window, op,
                                                                          &arithmetic_op_quantized_loop<ScalarType, ScalarType>,
                                                                          &arithmetic_op_broadcast_quantized_loop<ScalarType, ScalarType>);
}

template <ComparisonOperation op, typename InputScalarType, typename OutputScalarType = uint8_t>
void elementwise_comparison_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width");
    using InputVectorType  = typename wrapper::traits::sve_vector<InputScalarType>::type;
    using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;
    elementwise_quantized_op<InputVectorType, OutputVectorType, ComparisonOperation>(in1, in2, out, window, op,
                                                                                     &comparison_op_quantized_loop<InputScalarType, OutputScalarType>,
                                                                                     &comparison_op_broadcast_quantized_loop<InputScalarType, OutputScalarType>);
}
} // namespace cpu
} // namespace arm_compute

#endif /* defined(__ARM_FEATURE_SVE2) */
#endif /* SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H */