aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/CpuScaleKernel.cpp
blob: 29475fa63f265bba910d2d74f8ae13e4ca2345a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright (c) 2016-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/cpu/kernels/CpuScaleKernel.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/Utility.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/common/Registrars.h"
#include "src/core/cpu/kernels/scale/neon/list.h"
#include "src/core/cpu/kernels/scale/sve/list.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/ScaleHelpers.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/ScaleUtils.h"
#include "support/Rounding.h"

#include <arm_neon.h>
#include <map>

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
struct ScaleSelectorData
{
    DataType dt;
};
using ScaleSelectorPtr = std::add_pointer<bool(const ScaleSelectorData &data)>::type;
using ScaleKernelPtr   = std::add_pointer<void(const ITensor *, ITensor *, const ITensor *, const ITensor *, const ITensor *,
                                               InterpolationPolicy, BorderMode, PixelValue, float, bool, const Window &)>::type;
struct ScaleKernel
{
    const char            *name;
    const ScaleSelectorPtr is_selected;
    ScaleKernelPtr         ukernel;
};

static const ScaleKernel available_kernels[] =
{
#if defined(ENABLE_SVE)
    {
        "fp16_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::F16; },
        REGISTER_FP16_SVE(arm_compute::cpu::fp16_sve_scale)
    },
    {
        "f32_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::F32; },
        REGISTER_FP32_SVE(arm_compute::cpu::fp32_sve_scale)
    },
    {
        "qasymm8_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::QASYMM8; },
        REGISTER_QASYMM8_SVE(arm_compute::cpu::qasymm8_sve_scale)
    },
    {
        "qasymm8_signed_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
        REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::qasymm8_signed_sve_scale)
    },
    {
        "u8_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::U8; },
        REGISTER_INTEGER_SVE(arm_compute::cpu::u8_sve_scale)
    },
    {
        "s16_sve_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::S16; },
        REGISTER_INTEGER_SVE(arm_compute::cpu::s16_sve_scale)
    },
#endif /* defined(ENABLE_SVE) */
#if defined(ENABLE_NEON)
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
    {
        "common_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::F16; },
        REGISTER_FP16_NEON(arm_compute::cpu::common_neon_scale<float16_t>)
    },
#endif /* !defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
    {
        "common_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::F32; },
        REGISTER_FP32_NEON(arm_compute::cpu::common_neon_scale<float>)
    },
    {
        "qasymm8_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::QASYMM8; },
        REGISTER_QASYMM8_NEON(arm_compute::cpu::qasymm8_neon_scale)
    },
    {
        "qasymm8_signed_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::qasymm8_signed_neon_scale)
    },
    {
        "common_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::U8; },
        REGISTER_INTEGER_NEON(arm_compute::cpu::common_neon_scale<uint8_t>)
    },
    {
        "common_neon_scale",
        [](const ScaleSelectorData & data) { return data.dt == DataType::S16; },
        REGISTER_INTEGER_NEON(arm_compute::cpu::common_neon_scale<int16_t>)
    },
#endif /* defined(ENABLE_NEON) */
};

/** Micro-kernel selector
 *
 * @param[in] data Selection data passed to help pick the appropriate micro-kernel
 *
 * @return A matching micro-kernel else nullptr
 */
const ScaleKernel *get_implementation(const ScaleSelectorData &data)
{
    for(const auto &uk : available_kernels)
    {
        if(uk.is_selected(data))
        {
            return &uk;
        }
    }
    return nullptr;
}

Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dx, const ITensorInfo *dy,
                          const ITensorInfo *offsets, ITensorInfo *dst, const ScaleKernelInfo &info)
{
    const auto *uk = get_implementation(ScaleSelectorData{ src->data_type() });
    ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);

    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(dst);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
    ARM_COMPUTE_RETURN_ERROR_ON(dst == src);
    ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);
    ARM_COMPUTE_UNUSED(info.constant_border_value);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.use_padding, "Padding is not supported");

    const DataLayout data_layout   = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
    const auto       width_index   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const auto       height_index  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const auto       output_width  = dst->dimension(width_index);
    const auto       output_height = dst->dimension(height_index);
    ARM_COMPUTE_RETURN_ERROR_ON(output_width == 0);
    ARM_COMPUTE_RETURN_ERROR_ON(output_height == 0);

    if(info.interpolation_policy == InterpolationPolicy::NEAREST_NEIGHBOR)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
    }

    if(info.interpolation_policy == InterpolationPolicy::BILINEAR)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
        if(dx != nullptr && dy != nullptr)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32);
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32);
        }
    }

    ARM_COMPUTE_RETURN_ERROR_ON(info.align_corners && !scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy));

    if(info.interpolation_policy == InterpolationPolicy::AREA)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(data_layout != DataLayout::NCHW);
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::U8);
    }

    return Status{};
}
} // namespace

CpuScaleKernel::CpuScaleKernel()
    : _func(nullptr), _policy(), _border_mode(), _constant_border_value(PixelValue()), _sampling_offset(0), _align_corners(false), _data_layout(DataLayout::UNKNOWN)
{
}

void CpuScaleKernel::configure(const ITensorInfo *src, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets,
                               ITensorInfo *dst, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_UNUSED(dx, dy, offsets);
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src,
                                                  dx,
                                                  dy,
                                                  offsets,
                                                  dst,
                                                  info));

    // Get data layout and width/height indices
    _data_layout         = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
    const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
    const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

    _policy                = info.interpolation_policy;
    _border_mode           = info.border_mode;
    _constant_border_value = info.constant_border_value;
    _align_corners         = info.align_corners;

    if(info.sampling_policy == SamplingPolicy::CENTER)
    {
        _sampling_offset = 0.5f;
    }

    // Compute the ratio between source width/height and destination width/height
    const auto wr = scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), _align_corners);
    const auto hr = scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), _align_corners);

    // Area interpolation behaves as Nearest Neighbour in case of up-sampling
    _policy = (_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _policy;

    if(_border_mode == BorderMode::UNDEFINED)
    {
        _border_mode           = BorderMode::CONSTANT;
        _constant_border_value = PixelValue();
    }

#ifdef ENABLE_NCHW_KERNELS
    // Configure scale function to run
    if(_data_layout == DataLayout::NCHW)
    {
        std::string function_to_call("scale_");
        function_to_call += string_from_data_type(src->data_type()) + "_";
        function_to_call += string_from_data_layout(_data_layout) + "_";
        function_to_call += string_from_interpolation_policy(_policy);

        static std::map<std::string, ScaleFunctionPtr> map_function =
        {
            { "scale_U8_NCHW_AREA_CONSTANT", &CpuScaleKernel::scale_area_nchw_u8 },

            { "scale_U8_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_nchw<uint8_t> },
            { "scale_U8_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<uint8_t> },

            { "scale_QASYMM8_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_qasymm<uint8_t> },
            { "scale_QASYMM8_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<uint8_t> },

            { "scale_QASYMM8_SIGNED_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_qasymm<int8_t> },
            { "scale_QASYMM8_SIGNED_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<int8_t> },

            { "scale_S16_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_nchw<int16_t> },
            { "scale_S16_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<int16_t> },

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            { "scale_F16_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_nchw<float16_t> },
            { "scale_F16_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<float16_t> },
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

            { "scale_F32_NCHW_BILINEAR", &CpuScaleKernel::scale_bilinear_nchw<float> },
            { "scale_F32_NCHW_NEAREST_NEIGHBOUR", &CpuScaleKernel::scale_nearest_nchw<float> },
        };
        auto it = map_function.find(function_to_call);
        if(it != map_function.end())
        {
            _func = it->second;
        }
    }
#endif // ENABLE_NCHW_KERNELS

    // Configure window
    Window win = calculate_max_window(*dst, Steps());
    ICpuKernel::configure(win);
}

#ifdef ENABLE_NCHW_KERNELS
template <typename T>
void CpuScaleKernel::scale_nearest_nchw(const ITensor *src, ITensor *dst, const ITensor *dx, const ITensor *dy, const ITensor *offsets, const Window &window)
{
    ARM_COMPUTE_UNUSED(dx, dy);
    const size_t in_stride_x = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;

    // Compute the ratio between source height and destination height
    const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), _align_corners);

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));

    // Set offsets window
    Window win_off;
    win_off.set(Window::DimX, window[Window::DimX]);
    win_off.set(Window::DimY, window[Window::DimY]);
    for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
    {
        win_off.set(d, Window::Dimension(0, 0, 0));
    }

    // Create iterators
    Iterator src_i(src, win_in);
    Iterator dst_i(dst, window);
    Iterator offsets_i(offsets, win_off);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto offsets_ptr = reinterpret_cast<const int32_t *>(offsets_i.ptr());
        const auto in_yi       = static_cast<int32_t>(_align_corners ? utils::rounding::round_half_away_from_zero((id.y() + _sampling_offset) * hr) : std::floor((
                                                          id.y() + _sampling_offset)
                                                      * hr));
        const int32_t offset_row            = in_yi * in_stride_x;
        *reinterpret_cast<T *>(dst_i.ptr()) = *(reinterpret_cast<const T *>(src_i.ptr()) + offsets_ptr[0] + offset_row);
    },
    src_i, offsets_i, dst_i);
}

template <typename T>
void CpuScaleKernel::scale_bilinear_nchw(const ITensor *src, ITensor *dst, const ITensor *dx, const ITensor *dy, const ITensor *offsets, const Window &window)
{
    // Compute the ratio between source height and destination height
    const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), _align_corners);
    Window     win_off;
    win_off.set(Window::DimX, window.x());
    win_off.set(Window::DimY, window.y());

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));

    for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
    {
        win_off.set(d, Window::Dimension(0, 0, 0));
    }

    Iterator src_i(src, win_in);
    Iterator dst_i(dst, window);
    Iterator offsets_i(offsets, win_off);
    Iterator dx_i(dx, win_off);
    Iterator dy_i(dy, win_off);

    const int32_t in_dim_w    = src->info()->dimension(0);
    const int32_t in_dim_h    = src->info()->dimension(1);
    const int32_t in_stride_w = in_dim_w + src->info()->padding().left + src->info()->padding().right;

    if(_border_mode == BorderMode::CONSTANT)
    {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        using ConstType = T;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        const T const_border_value = static_cast<T>(_constant_border_value.get<ConstType>());
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int32_t index_h       = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset);
            const auto    index_w       = *(reinterpret_cast<const int32_t *>(offsets_i.ptr()));
            const auto    dx_val        = *(reinterpret_cast<const float *>(dx_i.ptr()));
            const auto    dy_val        = *(reinterpret_cast<const float *>(dy_i.ptr()));
            const auto    pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());

            const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + index_h * in_stride_w)) : const_border_value;
            const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w)) : const_border_value;
            const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h
                              && index_h < in_dim_h - 1) ?
                             (*(pixel_row_ptr + index_w + index_h * in_stride_w + in_stride_w)) :
                             const_border_value;
            const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h
                              && index_h < in_dim_h - 1) ?
                             (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w + in_stride_w)) :
                             const_border_value;

            *reinterpret_cast<T *>(dst_i.ptr()) = static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
        },
        src_i, offsets_i, dx_i, dy_i, dst_i);
    }
    else if(_border_mode == BorderMode::REPLICATE)
    {
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int  index_h       = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset);
            const auto index_w       = *(reinterpret_cast<const int32_t *>(offsets_i.ptr()));
            const auto dx_val        = *(reinterpret_cast<const float *>(dx_i.ptr()));
            const auto dy_val        = *(reinterpret_cast<const float *>(dy_i.ptr()));
            const auto pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());

            auto clamped_x  = utility::clamp<int>(index_w, 0, in_dim_w - 1);
            auto clamped_x1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
            auto clamped_y  = utility::clamp<int>(index_h, 0, in_dim_h - 1);
            auto clamped_y1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);

            const auto a00 = *(pixel_row_ptr + clamped_x + clamped_y * in_stride_w);
            const auto a01 = *(pixel_row_ptr + clamped_x1 + clamped_y * in_stride_w);
            const auto a10 = *(pixel_row_ptr + clamped_x + clamped_y1 * in_stride_w);
            const auto a11 = *(pixel_row_ptr + clamped_x1 + clamped_y1 * in_stride_w);

            *reinterpret_cast<T *>(dst_i.ptr()) = static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
        },
        src_i, offsets_i, dx_i, dy_i, dst_i);
    }
    else
    {
        ARM_COMPUTE_ERROR("Not implemented");
    }
}

void CpuScaleKernel::scale_area_nchw_u8(const ITensor *src, ITensor *dst, const ITensor *dx, const ITensor *dy, const ITensor *offsets, const Window &window)
{
    ARM_COMPUTE_UNUSED(dx, dy, offsets);
    using namespace scale_helpers;

    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::U8);

    // Don't increment in width/height/channels for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));

    Iterator src_i(src, win_in);
    Iterator dst_i(dst, window);

    const auto   wr        = scale_utils::calculate_resize_ratio(src->info()->dimension(0), dst->info()->dimension(0), _align_corners);
    const auto   hr        = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), _align_corners);
    const auto   w         = src->info()->dimension(0);
    const auto   h         = src->info()->dimension(1);
    const size_t in_stride = src->info()->strides_in_bytes()[1];

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto in_ptr = reinterpret_cast<const uint8_t *>(src_i.ptr());

        uint8x8_t tmp0 = vdup_n_u8(0);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7);

        uint8x8_t tmp1 = vdup_n_u8(0);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7);

        vst1q_u8(dst_i.ptr(), vcombine_u8(tmp0, tmp1));
    },
    src_i, dst_i);
}

template <typename T>
void CpuScaleKernel::scale_bilinear_qasymm(const ITensor *src, ITensor *dst, const ITensor *dx, const ITensor *dy, const ITensor *offsets, const Window &window)
{
    // Get data layout and width/height indices
    const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
    const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

    // Compute the ratio between source height and destination height
    const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), _align_corners);
    Window     win_off;
    win_off.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_off.set(Window::DimY, Window::Dimension(0, 0, 0));

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(idx_width, Window::Dimension(0, 0, 0));
    win_in.set(idx_height, Window::Dimension(0, 0, 0));

    for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
    {
        win_off.set(d, Window::Dimension(0, 0, 0));
    }

    Iterator src_i(src, win_in);
    Iterator dst_i(dst, window);

    const int32_t in_dim_w = src->info()->dimension(idx_width);
    const int32_t in_dim_h = src->info()->dimension(idx_height);
    const int32_t stride_w = src->info()->strides_in_bytes()[idx_width];
    const int32_t stride_h = src->info()->strides_in_bytes()[idx_height];

    const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform();
    const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();

    if(_border_mode == BorderMode::CONSTANT)
    {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        using ConstType = T;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        const T const_border_value = static_cast<T>(_constant_border_value.get<ConstType>());
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int32_t index_h       = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset);
            const int32_t index_w       = *(reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    dx_val        = *(reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    dy_val        = *(reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());

            const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ?
                             (*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) :
                             const_border_value;
            const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ?
                             (*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) :
                             const_border_value;
            const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ?
                             (*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) :
                             const_border_value;
            const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ?
                             (*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) :
                             const_border_value;

            const float inp00                   = Qasymm8QuantizationHelper<T>::dequantize(a00, iq_info);
            const float inp01                   = Qasymm8QuantizationHelper<T>::dequantize(a01, iq_info);
            const float inp10                   = Qasymm8QuantizationHelper<T>::dequantize(a10, iq_info);
            const float inp11                   = Qasymm8QuantizationHelper<T>::dequantize(a11, iq_info);
            *reinterpret_cast<T *>(dst_i.ptr()) = Qasymm8QuantizationHelper<T>::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
        },
        src_i, dst_i);
    }
    else if(_border_mode == BorderMode::REPLICATE)
    {
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int     index_h       = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset);
            const int32_t index_w       = *(reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    dx_val        = *(reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    dy_val        = *(reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
            const auto    pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());

            auto clamped_w  = utility::clamp<int>(index_w, 0, in_dim_w - 1);
            auto clamped_w1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
            auto clamped_h  = utility::clamp<int>(index_h, 0, in_dim_h - 1);
            auto clamped_h1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);

            const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h);
            const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h);
            const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h);
            const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h);

            const float inp00                   = Qasymm8QuantizationHelper<T>::dequantize(a00, iq_info);
            const float inp01                   = Qasymm8QuantizationHelper<T>::dequantize(a01, iq_info);
            const float inp10                   = Qasymm8QuantizationHelper<T>::dequantize(a10, iq_info);
            const float inp11                   = Qasymm8QuantizationHelper<T>::dequantize(a11, iq_info);
            *reinterpret_cast<T *>(dst_i.ptr()) = Qasymm8QuantizationHelper<T>::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
        },
        src_i, dst_i);
    }
    else
    {
        ARM_COMPUTE_ERROR("Not implemented");
    }
}
#endif // ENABLE_NCHW_KERNELS

Status CpuScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy,
                                const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, info));
    return Status{};
}

void CpuScaleKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr && _data_layout == DataLayout::NCHW);

    const auto src     = tensors.get_const_tensor(TensorType::ACL_SRC);
    auto       dst     = tensors.get_tensor(TensorType::ACL_DST);
    const auto dx      = tensors.get_const_tensor(TensorType::ACL_INT_0);
    const auto dy      = tensors.get_const_tensor(TensorType::ACL_INT_1);
    const auto offsets = tensors.get_const_tensor(TensorType::ACL_INT_2);

    if(_data_layout == DataLayout::NCHW)
    {
        (this->*_func)(src, dst, dx, dy, offsets, window);
    }
    else
    {
        const auto *uk = get_implementation(ScaleSelectorData{ src->info()->data_type() });
        uk->ukernel(src, dst, offsets, dx, dy, _policy, _border_mode, _constant_border_value, _sampling_offset, _align_corners, window);
    }
}

const char *CpuScaleKernel::name() const
{
    return "CpuScaleKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute