aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/scale/impl/SVE/fp16.cpp
blob: 91c3dc3b4e5058e49ca899dd2a91f373334c2d6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/common/Validate.h"
#include "src/core/helpers/ScaleHelpers.h"
#include "src/core/utils/ScaleUtils.h"
#include "support/Rounding.h"

#include <cmath>
#include <cstddef>

#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>

namespace arm_compute
{
namespace
{
void fp16_sve_scale_nearest(const ITensor *src, ITensor *dst, const ITensor *offsets,
                            float sampling_offset, bool align_corners, const Window &window)
{
    const size_t in_stride_c  = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;
    const size_t in_stride_w  = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom;
    const size_t in_stride_wc = in_stride_w * in_stride_c;
    const size_t in_dim_h     = src->info()->dimension(2);

    // Compute the ratio between source height and destination height
    const auto hr             = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners);
    const auto window_start_x = static_cast<int32_t>(window.x().start());
    const auto window_end_x   = static_cast<int32_t>(window.x().end());

    Window win(window);
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    Iterator out(dst, win);

    const uint8_t     *in_ptr_start        = src->buffer() + src->info()->offset_first_element_in_bytes();
    const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3];

    execute_window_loop(win, [&](const Coordinates & id)
    {
        const int32_t offset     = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c;
        const auto    in_hi      = static_cast<int>(align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr));
        const int     offset_row = in_hi * in_stride_wc;
        const auto    in_ptr     = reinterpret_cast<const float16_t *>(in_ptr_start + in_stride_bytes_hwc * id[3]);
        const auto    out_ptr    = reinterpret_cast<float16_t *>(out.ptr());

        // Compute S elements per iteration
        int      x  = window_start_x;
        svbool_t pg = svwhilelt_b16(x, window_end_x);
        do
        {
            // Store results
            svst1_f16(pg, out_ptr + x, svld1_f16(pg, in_ptr + offset + offset_row + x));

            x += svcntw();
            pg = svwhilelt_b16(x, window_end_x);
        }
        while(svptest_any(svptrue_b16(), pg));
    },
    out);
}

void fp16_sve_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
                             BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
                             bool align_corners, const Window &window)
{
    // Compute the ratio between source height and destination height
    const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners);

    Iterator  out(dst, window);
    const int in_stride_c  = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;
    const int in_dim_w     = src->info()->dimension(1);
    const int in_dim_h     = src->info()->dimension(2);
    const int in_stride_wc = in_stride_c * (in_dim_w + src->info()->padding().top + src->info()->padding().bottom);

    // Don't increment in Y and Z direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
    Iterator in(src, win_in);

    if(border_mode == BorderMode::CONSTANT)
    {
        using ConstType = typename std::conditional<std::is_same<float16_t, float16_t>::value, half, float16_t>::type;

        const float16_t const_border_value = static_cast<float16_t>(constant_border_value.get<ConstType>());
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const auto       offset = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z())));
            const auto       dx_val = *reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id.y(), id.z())));
            const auto       dy_val = *reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id.y(), id.z())));
            const int32_t    in_hi  = std::floor((id.z() + sampling_offset) * hr - sampling_offset);
            const float16_t *in_ptr = reinterpret_cast<const float16_t *>(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc;

            const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value;
            const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value;
            const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value;
            const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value;

            *reinterpret_cast<float16_t *>(out.ptr()) = static_cast<float16_t>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
        },
        in, out);
    }
    else if(border_mode == BorderMode::REPLICATE)
    {
        execute_window_loop(window, [&](const Coordinates & id)
        {
            const auto offset = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z())));
            const auto dx_val = *reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id.y(), id.z())));
            const auto dy_val = *reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id.y(), id.z())));
            const int  in_hi  = std::floor((id.z() + sampling_offset) * hr - sampling_offset);

            auto clamped_w  = utility::clamp<int>(offset, 0, in_dim_w - 1);
            auto clamped_w1 = utility::clamp<int>(offset + 1, 0, in_dim_w - 1);
            auto clamped_h  = utility::clamp<int>(in_hi, 0, in_dim_h - 1);
            auto clamped_h1 = utility::clamp<int>(in_hi + 1, 0, in_dim_h - 1);

            const auto a00 = *(reinterpret_cast<const float16_t *>(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc);
            const auto a01 = *(reinterpret_cast<const float16_t *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc);
            const auto a10 = *(reinterpret_cast<const float16_t *>(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc);
            const auto a11 = *(reinterpret_cast<const float16_t *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc);

            *reinterpret_cast<float16_t *>(out.ptr()) = static_cast<float16_t>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
        },
        in, out);
    }
    else
    {
        ARM_COMPUTE_ERROR("Not implemented");
    }
}
}
namespace cpu
{
void fp16_sve_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
                    InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
                    bool align_corners, const Window &window)
{
    if(policy == InterpolationPolicy::BILINEAR)
    {
        fp16_sve_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window);
    }
    else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR)
    {
        fp16_sve_scale_nearest(src, dst, offsets, sampling_offset, align_corners, window);
    }
}
} // namespace cpu
} // namespace arm_compute

#endif // __ARM_FEATURE_SVE