aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_2x2_5x5_fp32_fp32_integers.cpp
blob: 0f911f14a3432f15e89ad74e87c4949f551fe30f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "output.hpp"
#include "arm.hpp"

namespace winograd
{

template <>
void OutputTransform<5, 5, 6, 6, float, float, WinogradRoots::Integers>::transform_tile(
  const int n_channels,
  const float* inptr,
  const int matrix_stride,
  const float* bptr,
  float* const output,
  const int output_row_stride,
  const int output_col_stride,
  const float output_min,
  const float output_max
)
{
  // Construct a map to the output cells
  float *outptrs[output_tile_rows][output_tile_cols];
  for (int i = 0; i < output_tile_rows; i++)
  {
    for (int j = 0; j < output_tile_cols; j++)
    {
      outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
    }
  }

  // For each channel of the output
  int channels_remaining = n_channels;
#ifdef __aarch64__
  for (; channels_remaining >= 4; channels_remaining -= 4)
  {
    // Matrices used and computed during this transform
    float32x4_t F[6][6], FZ[6][2], f[2][2], b;

    // Read a 6x6 tile in the Winograd domain
    for (int i = 0, m = 0; i < 6; i++)
    {
      for (int j = 0; j < 6; j++, m++)
      {
        F[i][j] = vld1q_f32(inptr + m*matrix_stride);
      }
    }
    inptr += 4;

    // Compute the matrix F Z
    for (int i = 0; i < 6; i++)
    {
      // FZ[i][0] =  1*F[i][0] +  1*F[i][1] +  1*F[i][2] +  1*F[i][3] +  1*F[i][4];
      FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);

      // FZ[i][1] =               1*F[i][1] + -1*F[i][2] +  2*F[i][3] + -2*F[i][4] +  1*F[i][5];
      FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
    }

    // Compute the output tile f = ZT F Z
    for (int j = 0; j < 2; j++)
    {
      // f[0][j] =  1*FZ[0][j] +  1*FZ[1][j] +  1*FZ[2][j] +  1*FZ[3][j] +  1*FZ[4][j];
      f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);

      // f[1][j] =               1*FZ[1][j] + -1*FZ[2][j] +  2*FZ[3][j] + -2*FZ[4][j] +  1*FZ[5][j];
      f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
    }

    // Write out the output tile
    if (bptr != nullptr)
    {
      b = vld1q_f32(bptr);
      bptr += 4;
    }
    else
    {
      b = vdupq_n_f32(0.0f);
    }
    for (int i = 0; i < output_tile_rows; i++)
    {
      for (int j = 0; j < output_tile_cols; j++)
      {
        const auto y =
            vmaxq_f32(vminq_f32(vaddq_f32(f[i][j], b), vdupq_n_f32(output_max)),
                      vdupq_n_f32(output_min));
        vst1q_f32(outptrs[i][j], y);
        outptrs[i][j] += 4;
      }
    }
  }
#endif  // __aarch64__
#ifdef __arm_any__
  for (; channels_remaining >= 2; channels_remaining -= 2)
  {
    // Matrices used and computed during this transform
    float32x2_t F[6][6], FZ[6][2], f[2][2], b;

    // Read a 6x6 tile in the Winograd domain
    for (int i = 0, m = 0; i < 6; i++)
    {
      for (int j = 0; j < 6; j++, m++)
      {
        F[i][j] = vld1_f32(inptr + m*matrix_stride);
      }
    }
    inptr += 2;

    // Compute the matrix F Z
    for (int i = 0; i < 6; i++)
    {
      // FZ[i][0] =  1*F[i][0] +  1*F[i][1] +  1*F[i][2] +  1*F[i][3] +  1*F[i][4];
      FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);

      // FZ[i][1] =               1*F[i][1] + -1*F[i][2] +  2*F[i][3] + -2*F[i][4] +  1*F[i][5];
      FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
    }

    // Compute the output tile f = ZT F Z
    for (int j = 0; j < 2; j++)
    {
      // f[0][j] =  1*FZ[0][j] +  1*FZ[1][j] +  1*FZ[2][j] +  1*FZ[3][j] +  1*FZ[4][j];
      f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);

      // f[1][j] =               1*FZ[1][j] + -1*FZ[2][j] +  2*FZ[3][j] + -2*FZ[4][j] +  1*FZ[5][j];
      f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
    }

    // Write out the output tile
    if (bptr != nullptr)
    {
      b = vld1_f32(bptr);
      bptr += 2;
    }
    else
    {
      b = vdup_n_f32(0.0f);
    }
    for (int i = 0; i < output_tile_rows; i++)
    {
      for (int j = 0; j < output_tile_cols; j++)
      {
        const auto y =
            vmax_f32(vmin_f32(vadd_f32(f[i][j], b), vdup_n_f32(output_max)),
                     vdup_n_f32(output_min));
        vst1_f32(outptrs[i][j], y);
        outptrs[i][j] += 2;
      }
    }
  }
#endif  // __arm_any__
  for (; channels_remaining; channels_remaining--)
  {
    // Matrices used and computed during this transform
    float F[6][6], FZ[6][2], f[2][2], b;

    // Read a 6x6 tile in the Winograd domain
    for (int i = 0, m = 0; i < 6; i++)
    {
      for (int j = 0; j < 6; j++, m++)
      {
        F[i][j] = *(inptr + m*matrix_stride);
      }
    }
    inptr++;

    // Compute the matrix F Z
    for (int i = 0; i < 6; i++)
    {
      FZ[i][0] =  1*F[i][0] +  1*F[i][1] +  1*F[i][2] +  1*F[i][3] +  1*F[i][4];
      FZ[i][1] =               1*F[i][1] + -1*F[i][2] +  2*F[i][3] + -2*F[i][4] +  1*F[i][5];
    }

    // Compute the output tile f = ZT F Z
    for (int j = 0; j < 2; j++)
    {
      f[0][j] =  1*FZ[0][j] +  1*FZ[1][j] +  1*FZ[2][j] +  1*FZ[3][j] +  1*FZ[4][j];
      f[1][j] =                1*FZ[1][j] + -1*FZ[2][j] +  2*FZ[3][j] + -2*FZ[4][j] +  1*FZ[5][j];
    }

    // Write out the output tile
    if (bptr != nullptr)
    {
      b = *(bptr++);
    }
    else
    {
      b = 0.0f;
    }
    for (int i = 0; i < output_tile_rows; i++)
    {
      for (int j = 0; j < output_tile_cols; j++)
      {
        const auto y = std::max(std::min(f[i][j] + b, output_max), output_min);
        *(outptrs[i][j]++) = y;
      }
    }
  }
}

template class OutputTransform<5, 5, 6, 6, float, float, WinogradRoots::Integers>;

}  // namespace