aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/batchnormalization/impl/NEON/fp16.cpp
blob: 4108d79a5a6a655146a6669398751891a5f7553c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
 * Copyright (c) 2020-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/common/Validate.h"

#include <arm_neon.h>
#include <cmath>
#include <cstddef>

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
namespace arm_compute
{
namespace
{
using BatchNomalizationPtr = void (*)(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
                                      float epsilon, ActivationLayerInfo &act_info, const Window &window);

template <typename T>
void batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
                         float epsilon, ActivationLayerInfo &act_info, const Window &window)
{
    /** Neon vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<float16_t, wrapper::traits::BitWidth::W128>;

    const int  window_step_x  = 8;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input(src, win_collapsed);
    Iterator output(dst, win_collapsed);

    const auto input_mean  = reinterpret_cast<const float16_t *>(mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float16_t *>(var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (gamma != nullptr) ? reinterpret_cast<const float16_t *>(gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (beta != nullptr) ? reinterpret_cast<const float16_t *>(beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    T activation_functor(act_info);

    const auto epsilon_vec = wrapper::vdup_n(static_cast<float16_t>(epsilon), ExactTagType{});
    execute_window_loop(win_collapsed, [&](const Coordinates &)
    {
        const auto input_ptr  = reinterpret_cast<const float16_t *>(input.ptr());
        const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());

        // Perform core calculations using vector operations
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            // Conctruct vectors
            const auto mean_vec  = wrapper::vloadq(input_mean + x);
            const auto var_vec   = wrapper::vloadq(input_var + x);
            const auto gamma_vec = (input_gamma != nullptr) ? wrapper::vloadq(input_gamma + x) : wrapper::vdup_n(static_cast<float16_t>(1.f), ExactTagType{});
            const auto beta_vec  = (input_beta != nullptr) ? wrapper::vloadq(input_beta + x) : wrapper::vdup_n(static_cast<float16_t>(0.f), ExactTagType{});

            // Calculate denominator
            const auto denominator = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));

            // Calculate x bar
            const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
            const auto x_bar     = wrapper::vmul(numerator, denominator);
            auto       res       = wrapper::vmla(beta_vec, x_bar, gamma_vec);

            // Perform fused activation
            if(act_info.enabled())
            {
                activation_functor(res);
            }

            // Store results
            wrapper::vstore(output_ptr + x, res);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            // Conctruct vectors
            const float16_t gamma = (input_gamma != nullptr) ? input_gamma[x] : 1.f;
            const float16_t beta  = (input_beta != nullptr) ? input_beta[x] : 0.f;

            const float16_t denominator = sqrt(input_var[x] + epsilon);
            const float16_t numerator   = input_ptr[x] - input_mean[x];
            const float16_t x_bar       = numerator / denominator;
            float16_t       res         = beta + x_bar * gamma;

            // Perform fused activation
            if(act_info.enabled())
            {
                activation_functor(res);
            }

            // Store results
            *reinterpret_cast<float16_t *>(output_ptr + x) = res;
        }
    },
    input, output);
}

// Fused Batched Normalization with activation functions
static std::map<ActivationLayerInfo::ActivationFunction, BatchNomalizationPtr> fused_map =
{
    { ActivationLayerInfo::ActivationFunction::RELU, &batch_normalization<detail::relu<float16_t, 8>> },
    { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &batch_normalization<detail::brelu<float16_t, 8>> },
    { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &batch_normalization<detail::lubrelu<float16_t, 8>> }
};
}
namespace cpu
{
void fp16_neon_batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
                                   float epsilon, ActivationLayerInfo &act_info, const Window &window)
{
    if(act_info.enabled())
    {
        fused_map[act_info.activation()](src, dst, mean, var, beta, gamma, epsilon, act_info, window);
    }
    else
    {
        batch_normalization<detail::dummy<float16_t, 8>>(src, dst, mean, var, beta, gamma, epsilon, act_info, window);
    }
}
} // namespace cpu
} // namespace arm_compute

#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */