aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEWinogradLayerKernel.cpp
blob: 24d72eddd82744671bb6b00a440733dd687af26f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEWinogradLayerKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "support/ToolchainSupport.h"

#include "arm_compute/core/NEON/kernels/winograd/winograd_layer.hpp"

namespace
{
using T = WinogradConvolutionLayer<2, 2, 3, 3, float, float>;
} // namespace

namespace arm_compute
{
class Winograd3x3F32::Private
{
public:
    Private(
        const int          n_batches,         /** Number of batches in the input and output tensors. */
        const int          n_input_channels,  /** Number of feature maps in a batch of the input tensor. */
        const int          n_input_rows,      /** Number of rows in a feature map of the input tensor. */
        const int          n_input_cols,      /** Number of columns in a feature map of the input tensor. */
        const int          n_output_channels, /** Number of feature maps in the output tensor. */
        const bool         same_padding,      /** Use "SAME" padding, otherwise use "VALID". */
        const float *const weights,           /** Pointer to weight tensor in spatial domain. Must be ordered as "Height x Rows x Input Feature Maps x Output Feature Maps. */
        float *const       weights_storage,   /** Pointer to storage for weight tensor in the Winograd domain. Must be at least the size returned by `get_weight_storage_size`. */
        const float *const input,             /** Pointer to NHWC ordered input tensor, in the spatial domain. */
        float *const       winograd_input,    /** Pointer to working space for the input tensor in the Winograd domain. Must be at least the size returned by `get_input_storage_size`. */
        float *const       output,            /** Pointer to NHWC ordered output tensor, in the spatial domain. */
        float *const       winograd_output    /** Pointer to working space for the output tensor in the Winograd domain. Must be at least the size returned by `get_output_storage_size`. */
    )
        : convolver(n_batches, n_input_channels, n_input_rows, n_input_cols, n_output_channels, same_padding, weights, weights_storage, input, winograd_input, output, winograd_output)
    {
    }
    T convolver;
};

Winograd3x3F32::~Winograd3x3F32()
{
}

void Winograd3x3F32::transform_output()
{
    auto win = _pimpl->convolver.output_transform.get_window();
    _pimpl->convolver.output_transform.run(0, win);
}

void Winograd3x3F32::transform_input()
{
    auto win = _pimpl->convolver.input_transform.get_window();
    _pimpl->convolver.input_transform.run(0, win);
}

void Winograd3x3F32::transform_weights()
{
    auto win = _pimpl->convolver.weights_transform.get_window();
    _pimpl->convolver.weights_transform.run(0, win);
}

Winograd3x3F32::Winograd3x3F32(
    const int          n_batches,         /** Number of batches in the input and output tensors. */
    const int          n_input_channels,  /** Number of feature maps in a batch of the input tensor. */
    const int          n_input_rows,      /** Number of rows in a feature map of the input tensor. */
    const int          n_input_cols,      /** Number of columns in a feature map of the input tensor. */
    const int          n_output_channels, /** Number of feature maps in the output tensor. */
    const bool         same_padding,      /** Use "SAME" padding, otherwise use "VALID". */
    const float *const weights,           /** Pointer to weight tensor in spatial domain. Must be ordered as "Height x Rows x Input Feature Maps x Output Feature Maps. */
    float *const       weights_storage,   /** Pointer to storage for weight tensor in the Winograd domain. Must be at least the size returned by `get_weight_storage_size`. */
    const float *const input,             /** Pointer to NHWC ordered input tensor, in the spatial domain. */
    float *const       winograd_input,    /** Pointer to working space for the input tensor in the Winograd domain. Must be at least the size returned by `get_input_storage_size`. */
    float *const       output,            /** Pointer to NHWC ordered output tensor, in the spatial domain. */
    float *const       winograd_output    /** Pointer to working space for the output tensor in the Winograd domain. Must be at least the size returned by `get_output_storage_size`. */
)
    : _pimpl(support::cpp14::make_unique<Private>(n_batches, n_input_channels, n_input_rows, n_input_cols, n_output_channels, same_padding, weights, weights_storage, input, winograd_input, output,
                                                  winograd_output))
{
}

unsigned int NEWinogradLayerKernel::get_input_storage_size(const int n_batches, const int n_channels, const int n_rows, const int n_cols, const bool same_padding)
{
    return T::get_input_storage_size(n_batches, n_channels, n_rows, n_cols, same_padding);
}

unsigned int NEWinogradLayerKernel::get_output_storage_size(
    const int  n_batches,         /** Number of batches in the output tensor. */
    const int  n_rows,            /** Number of rows in each feature map of the input tensor. */
    const int  n_cols,            /** Number of columns in each feature map of the input tensor. */
    const int  n_output_channels, /** Number of feature maps in the output tensor. */
    const bool same_padding       /** Use "SAME" padding, otherwise use "VALID". */
)
{
    return T::get_output_storage_size(n_batches, n_rows, n_cols, n_output_channels, same_padding);
}

size_t NEWinogradLayerKernel::get_weight_storage_size(const int n_output_channels, const int n_input_channels)
{
    return T::get_weight_storage_size(n_output_channels, n_input_channels);
}

NEWinogradLayerKernel::NEWinogradLayerKernel()
    : _convolver(nullptr)
{
}

void NEWinogradLayerKernel::configure(Winograd3x3F32 *convolver)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(convolver);
    _convolver = convolver;
    Window win;
    auto   win_last = _convolver->_pimpl->convolver.gemms.get_window();
    win.set(Window::DimX, Window::Dimension(0, win_last, 1));
    INEKernel::configure(win);
}

void NEWinogradLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    const size_t first_gemm = window.x().start();
    const size_t last_gemm  = window.x().end();
    _convolver->_pimpl->convolver.gemms.run(first_gemm, last_gemm);
}
} // namespace arm_compute