aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEWinogradConvolutionLayerKernel.cpp
blob: 263ded0b84a766bc998f284763b149cc493e2d65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"

namespace arm_compute
{
//Batched Gemms

namespace
{
inline bool is_kernel_size_supported(Size2D size)
{
    const std::array<Size2D, 8> supported_input_sizes = { { Size2D(1, 3), Size2D(3, 1), Size2D(5, 5), Size2D(3, 3), Size2D(1, 5), Size2D(5, 1), Size2D(7, 1), Size2D(1, 7) } };
    return std::end(supported_input_sizes) != std::find(std::begin(supported_input_sizes), std::end(supported_input_sizes), size);
}

Status validate_arguments_winograd_weight_trans(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);

    const size_t idx_width    = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height   = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
    const auto   input_width  = input->dimension(idx_width);
    const auto   input_height = input->dimension(idx_height);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_kernel_size_supported(Size2D(input_width, input_height)), "Only 1x3, 3x1, 1x5, 5x1, 7x1, 1x7, 3x3 and 5x5 kernels are supported");
    ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
    const Size2D &output_tile = winograd_info.output_tile_size;
    const std::array<Size2D, 8> supported_tile_sizes = { { Size2D(2U, 2U), Size2D(4U, 4U), Size2D(1U, 6U), Size2D(6U, 1U), Size2D(4, 1), Size2D(1, 4), Size2D(2, 1), Size2D(1, 2) } };
    ARM_COMPUTE_RETURN_ERROR_ON(std::end(supported_tile_sizes) == std::find(std::begin(supported_tile_sizes), std::end(supported_tile_sizes), output_tile));

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_filter_transform_shape(*input, winograd_info));

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window_winograd_weight_trans(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
    const Size2D kernel_dims = winograd_info.kernel_size;
    // Output tensor auto inizialitation if not yet initialized
    auto_init_if_empty(*output, input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_filter_transform_shape(*input, winograd_info)));

    unsigned int num_elems_processed_per_iteration_x = kernel_dims.width;
    unsigned int num_elems_processed_per_iteration_y = kernel_dims.height;

    Window win            = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
    bool   window_changed = false;

    AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
    AccessWindowStatic    output_access(output, 0, 0, output->dimension(0), output->dimension(1));
    window_changed = update_window_and_padding(win, input_access, output_access);
    output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));

    Window win_collapsed = win.collapse(win, Window::DimZ);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};

    return std::make_pair(err, win_collapsed);
}

Status validate_arguments_winograd_input_trans(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
    const Size2D        &kernel_dims = winograd_info.kernel_size;
    const PadStrideInfo &conv_info   = winograd_info.convolution_info;
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_kernel_size_supported(Size2D(kernel_dims.width, kernel_dims.height)),
                                    "Only 1x3, 3x1, 3x3 and 5x5 kernels are supported");

    // Validate configured output
    if(output->total_size() != 0)
    {
        const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window_winograd_input_trans(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
    const PadStrideInfo conv_info        = winograd_info.convolution_info;
    const Size2D        output_tile_size = winograd_info.output_tile_size;
    const Size2D        kernel_dims      = winograd_info.kernel_size;
    const TensorShape   output_shape     = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
    // Output auto inizialitation if not yet initialized
    auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));

    unsigned int num_elems_read_per_iteration_x = (output_tile_size.width + kernel_dims.width - 1);
    unsigned int num_elems_read_per_iteration_y = (output_tile_size.height + kernel_dims.height - 1);

    Window win = calculate_max_window(*input, Steps(1, 1));

    AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y);

    bool window_changed = update_window_and_padding(win, input_access);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

Status validate_arguments_winograd_output_trans(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
    const PadStrideInfo &conv_info   = winograd_info.convolution_info;
    const Size2D         kernel_dims = winograd_info.kernel_size;

    // Number of tiles along the X and Y direction
    const unsigned int num_tiles_x = std::ceil((winograd_info.input_dimensions.x() - (kernel_dims.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>
                                               (winograd_info.output_tile_size.width));
    const unsigned int num_tiles_y = std::ceil((winograd_info.input_dimensions.y() - (kernel_dims.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>
                                               (winograd_info.output_tile_size.height));
    const Size2D       num_tiles   = Size2D(num_tiles_x, num_tiles_y);

    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(1) != num_tiles.area());
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_kernel_size_supported(Size2D(kernel_dims.width, kernel_dims.height)),
                                    "Only 1x3, 3x1, 3x3 and 5x5 kernels are supported");

    const std::array<unsigned int, 3> supported_gemm_sizes = { { 8U, 16U, 36U } };
    ARM_COMPUTE_RETURN_ERROR_ON(std::end(supported_gemm_sizes) == std::find(std::begin(supported_gemm_sizes), std::end(supported_gemm_sizes), input->dimension(2)));
    ARM_COMPUTE_UNUSED(kernel_dims);
    if(bias != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
        ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() != size_t(1));
    }

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_output_transform_shape(*input, winograd_info));
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }
    return Status{};
}

std::pair<Status, Window> validate_and_configure_window_winograd_output_trans(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output, const WinogradInfo &winograd_info)
{
    // Output tensor auto initialization if not yet initialized
    auto_init_if_empty(*output, input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_output_transform_shape(*input, winograd_info)));

    constexpr unsigned int num_elems_processed_per_iteration = 1;

    Window win            = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
    bool   window_changed = false;

    AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration);
    AccessWindowStatic    output_access(output, 0, 0, ceil_to_multiple(output->dimension(0), 2), ceil_to_multiple(output->dimension(1), 2));

    if(bias != nullptr)
    {
        AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
        window_changed = update_window_and_padding(win, input_access, bias_access, output_access);
    }
    else
    {
        window_changed = update_window_and_padding(win, input_access, output_access);
    }
    output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

template <typename T>
Status INEWinogradLayerTransformWeightsKernel<T>::validate(const ITensorInfo *input, const ITensorInfo *weights)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    const DataLayout   data_layout = input->data_layout();
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_kernel_size_supported(Size2D(weights->dimension(width_idx), weights->dimension(height_idx))),
                                    "Only 1x3, 3x1, 3x3 and 5x5 kernels are supported");
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
    return Status{};
}

template class INEWinogradLayerTransformWeightsKernel<float>;

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_weight_storage_size(int num_output_channels, int num_input_channels) const
{
    const KernelShape shape(num_output_channels, KernelRows, KernelCols, num_input_channels);
    return static_cast<unsigned int>(
               // WinogradConv returns the size in bytes, we divide by `sizeof(T)` to express that in units of T
               WinogradConv::get_kernel_storage_size(shape) / sizeof(T));
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformWeightsKernel()
    : _transform(nullptr), _weights_hwio(nullptr), _output(nullptr), _matrix_stride(0), _num_output_channels(0), _num_input_channels(0)
{
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(const KernelShape &kernel_shape) const
{
    return WinogradConv::get_kernel_matrix_stride(kernel_shape);
}

#ifndef DOXYGEN_SKIP_THIS
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
    const ITensor *weights_hwio,
    ITensor       *output,
    const int      matrix_stride,       /** Stride across matrices in the output. */
    const int      num_output_channels, /** Number of filters. */
    const int      num_input_channels)  /** Number of channels in each filter. */
{
    _weights_hwio        = weights_hwio;
    _output              = output;
    _matrix_stride       = matrix_stride;
    _num_output_channels = num_output_channels;
    _num_input_channels  = num_input_channels;
    _transform           = arm_compute::support::cpp14::make_unique<WeightsTransform>(num_output_channels, num_input_channels);

    Window win;
    auto   win_last = _transform->get_window();
    win.set(Window::DimX, Window::Dimension(0, win_last, 1));
    INEKernel::configure(win);
}
#endif /* DOXYGEN_SKIP_THIS */

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    const size_t fst = window.x().start();
    const size_t lst = window.x().end();
    _transform->set_weight_tensor(_weights_hwio->buffer());
    const int matrix_row_stride = roundup(_num_output_channels, WinogradConv::N_BLOCK);
    _transform->set_output_matrices(_output->buffer(), _matrix_stride, matrix_row_stride);
    _transform->set_working_space(_output->buffer());

    _transform->run(fst, lst);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
bool NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::is_parallelisable() const
{
    return false;
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *output,
                                                                                                                  const WinogradInfo &winograd_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_weight_trans(input, output, winograd_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_weight_trans(input->clone().get(), output->clone().get(), winograd_info).first);
    return Status{};
}

template class NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>;
template class NEWinogradLayerTransformWeightsKernel<float, 1, 6, 1, 3>;
template class NEWinogradLayerTransformWeightsKernel<float, 6, 1, 3, 1>;

template class NEWinogradLayerTransformWeightsKernel<float, 1, 4, 1, 5>;
template class NEWinogradLayerTransformWeightsKernel<float, 4, 1, 5, 1>;
template class NEWinogradLayerTransformWeightsKernel<float, 1, 2, 1, 7>;
template class NEWinogradLayerTransformWeightsKernel<float, 2, 1, 7, 1>;
// Input transform

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_input_storage_size(
    int  num_batches,  /* Number of batches in the input tensor. */
    int  num_channels, /* Number of feature maps in the input tensor. */
    int  num_rows,     /* Number of rows in each feature map. */
    int  num_cols,     /* Number of columns in each feature map. */
    bool same_padding  /* Use "SAME" padding, otherwise use "VALID". */
) const
{
    // Construct shapes for the input and kernel tensors.
    const Tensor4DShape input_shape(num_batches, num_rows, num_cols, num_channels);
    const KernelShape   kern_shape(1, KernelRows, KernelCols, num_channels);
    const PaddingType   padding = (same_padding) ? PADDING_SAME : PADDING_VALID;
    // Return the size, converted into units of TIn
    return static_cast<unsigned int>(WinogradConv::get_input_storage_size(kern_shape, input_shape, padding) / sizeof(T));
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_working_space_size(unsigned int num_threads) const
{
    return _transform->get_working_space_size(num_threads) / sizeof(T);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(
    const KernelShape &kernel_shape, const Tensor4DShape &input_shape, const PaddingType padding_type) const
{
    return WinogradConv::get_input_matrix_stride(kernel_shape, input_shape, padding_type);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformInputKernel()
    : _transform(nullptr), _input_nhwc(nullptr), _num_batches(0), _num_rows(0), _num_cols(0), _num_channels(0), _padding(), _output(nullptr), _matrix_stride(0), _padding_top(), _padding_left(),
      _padding_right(), _padding_bottom(), _workspace(nullptr)
{
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
    const ITensor    *input_nhwc,
    const int         num_batches,   /* Number of batches in input tensor. */
    const int         num_rows,      /* Number of rows in input tensor. */
    const int         num_cols,      /* Number of columns in input tensor. */
    const int         num_channels,  /* Number of channels in input tensor. */
    const PaddingType padding,       /* Padding type. */
    ITensor          *output,        /* Base of output matrices. */
    const int         matrix_stride, /* Stride between output matrices. */
    ITensor          *workspace)
{
    _input_nhwc    = input_nhwc;
    _num_batches   = num_batches;
    _num_rows      = num_rows;
    _num_cols      = num_cols;
    _num_channels  = num_channels;
    _padding       = padding;
    _output        = output;
    _matrix_stride = matrix_stride;
    _workspace     = workspace;

    _padding_top    = (padding == PADDING_SAME) ? (KernelRows - 1) / 2 : 0;
    _padding_left   = (padding == PADDING_SAME) ? (KernelCols - 1) / 2 : 0;
    _padding_bottom = (padding == PADDING_SAME) ? iceildiv(KernelRows - 1, 2) : 0;
    _padding_right  = (padding == PADDING_SAME) ? iceildiv(KernelCols - 1, 2) : 0;

    _transform = arm_compute::support::cpp14::make_unique<InputTransform>(
                     KernelRows,
                     KernelCols,
                     num_batches,
                     num_rows,
                     num_cols,
                     num_channels,
                     _padding_top,    /**< Padding to apply to the top of the image. */
                     _padding_left,   /**< Padding to apply to the left of the image. */
                     _padding_bottom, /**< Padding to apply to the bottom of the image. */
                     _padding_right   /**< Padding to apply to the right of the image. */
                 );

    Window win;
    auto   win_last = _transform->get_window();
    win.set(Window::DimX, Window::Dimension(0, win_last, 1));
    INEKernel::configure(win);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_NULLPTR(_workspace);

    const int  element_size_in_bytes = _input_nhwc->info()->element_size();
    const int  input_col_stride      = _input_nhwc->info()->strides_in_bytes().y() / element_size_in_bytes;
    const int  input_row_stride      = _input_nhwc->info()->strides_in_bytes().z() / element_size_in_bytes;
    const int  input_batch_stride    = _input_nhwc->info()->strides_in_bytes()[3] / element_size_in_bytes;
    const auto input_nhwc_ptr        = reinterpret_cast<const T *>(_input_nhwc->buffer() + _input_nhwc->info()->offset_first_element_in_bytes());
    auto       output_ptr            = reinterpret_cast<T *>(_output->buffer() + _output->info()->offset_first_element_in_bytes());
    ARM_COMPUTE_ERROR_ON_NULLPTR(output_ptr);

    _transform->set_input_tensor(input_nhwc_ptr, input_batch_stride, input_row_stride, input_col_stride);
    _transform->set_output_matrices(output_ptr, _matrix_stride, _num_channels);

    _transform->set_working_space(_workspace->buffer());

    // The code below cannot be moved to configure because biases hasn't been allocated at that point
    const size_t fst = window.x().start();
    const size_t lst = window.x().end();
    _transform->run(fst, lst, info.thread_id);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_input_trans(input, output, winograd_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_input_trans(input->clone().get(), output->clone().get(), winograd_info).first);

    return Status{};
}

template class NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>;
template class NEWinogradLayerTransformInputKernel<float, 1, 6, 1, 3>;
template class NEWinogradLayerTransformInputKernel<float, 6, 1, 3, 1>;

template class NEWinogradLayerTransformInputKernel<float, 1, 4, 1, 5>;
template class NEWinogradLayerTransformInputKernel<float, 4, 1, 5, 1>;
template class NEWinogradLayerTransformInputKernel<float, 1, 2, 1, 7>;
template class NEWinogradLayerTransformInputKernel<float, 2, 1, 7, 1>;

// Output transform

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_storage_size(
    int  num_batches,         /* Number of batches in the output tensor. */
    int  num_rows,            /* Number of rows in each feature map of the input tensor. */
    int  num_cols,            /* Number of columns in each feature map of the input tensor. */
    int  num_output_channels, /* Number of feature maps in the output tensor. */
    bool same_padding         /* Use "SAME" padding, otherwise use "VALID". */
) const
{
    // Construct shapes for the input and kernel tensors.
    const Tensor4DShape input_shape(num_batches, num_rows, num_cols, 1);
    const KernelShape   kern_shape(num_output_channels, KernelRows, KernelCols, 1);
    const PaddingType   padding = (same_padding) ? PADDING_SAME : PADDING_VALID;

    // Return the size, converted into units of TOut
    return static_cast<unsigned int>(
               WinogradConv::get_output_storage_size(kern_shape, input_shape, padding) / sizeof(T));
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformOutputKernel()
    : _transform(nullptr), _biases(nullptr), _transformed_output(nullptr), _workspace(nullptr), _matrix_stride(0), _matrix_row_stride(0), _output_nhwc(nullptr), _num_batches(0), _num_rows(0),
      _num_cols(0), _num_channels(0)
{
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_working_space_size(unsigned int num_threads) const
{
    return _transform->get_working_space_size(num_threads) / sizeof(T);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(
    const KernelShape &kernel_shape, const Tensor4DShape &input_shape, const PaddingType padding_type) const
{
    return WinogradConv::get_output_matrix_stride(kernel_shape, input_shape, padding_type);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Tensor4DShape NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_shape(
    const KernelShape &kernel_shape, const Tensor4DShape &in_shape, const PaddingType padding) const
{
    return WinogradConv::get_output_shape(kernel_shape, in_shape, padding);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
    const ITensor *biases,
    const ITensor *transformed_output,
    const int      matrix_stride,
    ITensor       *output_nhwc,
    const int      num_batches,
    const int      num_rows,
    const int      num_cols,
    const int      num_channels,
    ITensor       *workspace)
{
    _biases             = biases;
    _workspace          = workspace;
    _transformed_output = transformed_output;
    _matrix_stride      = matrix_stride;
    _matrix_row_stride  = roundup(num_channels, WinogradConv::N_BLOCK);
    _output_nhwc        = output_nhwc;
    _num_batches        = num_batches;
    _num_rows           = num_rows;
    _num_cols           = num_cols;
    _num_channels       = num_channels;
    // We don't have the biases buffer at this stage as it hasn't been allocated, we pass in nullptr OutputTransform is only used here to compute the window
    _transform = arm_compute::support::cpp14::make_unique<OutputTransform>(num_batches, num_rows, num_cols, num_channels);
    Window win;
    auto   win_last = _transform->get_window();
    win.set(Window::DimX, Window::Dimension(0, win_last, 1));
    _output_nhwc->info()->set_valid_region(ValidRegion(Coordinates(), _output_nhwc->info()->tensor_shape()));

    INEKernel::configure(win);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_NULLPTR(_workspace);
    ARM_COMPUTE_ERROR_ON_NULLPTR(_transformed_output);
    ARM_COMPUTE_ERROR_ON_NULLPTR(_output_nhwc);

    const int out_batch_stride = _output_nhwc->info()->strides_in_bytes()[3] / sizeof(T);
    const int out_row_stride   = _output_nhwc->info()->strides_in_bytes()[2] / sizeof(T);
    const int out_col_stride   = _output_nhwc->info()->strides_in_bytes()[1] / sizeof(T);

    _transform->set_input_matrices(_transformed_output->buffer(), _matrix_stride, _matrix_row_stride);
    _transform->set_bias((_biases ? reinterpret_cast<T *>(_biases->buffer() + _biases->info()->offset_first_element_in_bytes()) : nullptr));
    _transform->set_output_tensor(_output_nhwc->buffer() + _output_nhwc->info()->offset_first_element_in_bytes(), out_batch_stride, out_row_stride, out_col_stride);
    _transform->set_working_space(_workspace->buffer());
    // The code below cannot be moved to configure because biases hasn't been allocated at that point
    const size_t fst = window.x().start();
    const size_t lst = window.x().end();
    _transform->run(fst, lst, info.thread_id);
}

template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
                                                                                                                 const WinogradInfo &winograd_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_output_trans(input, (bias != nullptr ? bias->clone().get() : nullptr), output, winograd_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_output_trans(input->clone().get(), (bias != nullptr ? bias->clone().get() : nullptr), output->clone().get(),
                                                                                    winograd_info)
                                .first);

    return Status{};
}

template class NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>;
template class NEWinogradLayerTransformOutputKernel<float, 1, 6, 1, 3>;
template class NEWinogradLayerTransformOutputKernel<float, 6, 1, 3, 1>;

template class NEWinogradLayerTransformOutputKernel<float, 1, 4, 1, 5>;
template class NEWinogradLayerTransformOutputKernel<float, 4, 1, 5, 1>;
template class NEWinogradLayerTransformOutputKernel<float, 1, 2, 1, 7>;
template class NEWinogradLayerTransformOutputKernel<float, 2, 1, 7, 1>;

} // namespace arm_compute