aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEUpsampleLayerKernel.cpp
blob: c89983520b92a2cdfffbbb287fd9fa11bdb2da93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEUpsampleLayerKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

#include <arm_neon.h>

namespace arm_compute
{
namespace
{
std::pair<Status, Window> validate_and_configure_window_nchw(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info)
{
    const int              num_elems_processed_per_iteration_x_out = num_elems_processed_per_iteration_x * info.x();
    Window                 win                                     = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x_out));
    AccessWindowRectangle  input_access(input, 0, 0, num_elems_processed_per_iteration_x, 1, 0.5f, 0.5f);
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x_out);
    bool                   window_changed = update_window_and_padding(win, input_access, output_access);
    output_access.set_valid_region(win, output->valid_region());

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

std::pair<Status, Window> validate_and_configure_window_nhwc(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info)
{
    ARM_COMPUTE_UNUSED(info);
    Window                 win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x));
    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration_x);
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x);
    bool                   window_changed = update_window_and_padding(win, input_access, output_access);
    output_access.set_valid_region(win, output->valid_region());

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info)
{
    std::pair<Status, Window> win_config;
    switch(input->data_layout())
    {
        case DataLayout::NCHW:
            win_config = validate_and_configure_window_nchw(input, output, num_elems_processed_per_iteration_x, info);
            break;
        case DataLayout::NHWC:
            win_config = validate_and_configure_window_nhwc(input, output, num_elems_processed_per_iteration_x, info);
            break;
        default:
            win_config = std::make_pair(ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported data layout!"), Window{});
    }

    return win_config;
}
} // namespace
NEUpsampleLayerKernel::NEUpsampleLayerKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _info(), _num_elems_processed_per_iteration_x()
{
}

Status NEUpsampleLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &info, const InterpolationPolicy policy)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_UNUSED(policy);

    const DataLayout data_layout = input->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.x() != 2 || info.y() != 2, "Only stride 2 is supported");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(policy != InterpolationPolicy::NEAREST_NEIGHBOR, "Only nearest neighbor policy supported");

    // Check output if configured
    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(idx_width) != info.x() * input->dimension(idx_width));
        ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(idx_height) != info.y() * input->dimension(idx_height));
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
    }

    const int num_elems_processed_per_iteration_x = 16 / input->element_size();
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
                                                              output->clone().get(), num_elems_processed_per_iteration_x, info)
                                .first);
    return Status{};
}

void NEUpsampleLayerKernel::upsample_f32_nchw(const arm_compute::Window &window)
{
    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x));

    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y()));

    Iterator  input(_input, window_in);
    Iterator  output(_output, window_out);
    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const float32x4_t data      = vld1q_f32(reinterpret_cast<const float *>(input.ptr()));
        const float32x4_t data_out1 = { vgetq_lane_f32(data, 0), vgetq_lane_f32(data, 0), vgetq_lane_f32(data, 1), vgetq_lane_f32(data, 1) };
        const float32x4_t data_out2 = { vgetq_lane_f32(data, 2), vgetq_lane_f32(data, 2), vgetq_lane_f32(data, 3), vgetq_lane_f32(data, 3) };
        auto              out       = reinterpret_cast<float *>(output.ptr());

        vst1q_f32(out, data_out1);
        vst1q_f32(out + 4, data_out2);
        vst1q_f32(out + offset_y_out, data_out1);
        vst1q_f32(out + offset_y_out + 4, data_out2);
    },
    input, output);
}

void NEUpsampleLayerKernel::upsample_f32_nhwc(const arm_compute::Window &window)
{
    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x()));
    window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y()));

    Iterator input(_input, window);
    Iterator output(_output, window_out);

    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float);
    const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(float);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr()));
        auto              out  = reinterpret_cast<float *>(output.ptr());

        vst1q_f32(out, data);
        vst1q_f32(out + offset_y_out, data);
        vst1q_f32(out + offset_z_out, data);
        vst1q_f32(out + offset_y_out + offset_z_out, data);
    },
    input, output);
}

void NEUpsampleLayerKernel::upsample_qasymm8_nchw(const arm_compute::Window &window)
{
    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x));

    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y()));

    Iterator  input(_input, window_in);
    Iterator  output(_output, window_out);
    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(uint8_t);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const uint8x16_t data      = vld1q_u8(reinterpret_cast<const uint8_t *>(input.ptr()));
        const uint8x16_t data_out1 = { vgetq_lane_u8(data, 0), vgetq_lane_u8(data, 0), vgetq_lane_u8(data, 1), vgetq_lane_u8(data, 1),
                                       vgetq_lane_u8(data, 2), vgetq_lane_u8(data, 2), vgetq_lane_u8(data, 3), vgetq_lane_u8(data, 3),
                                       vgetq_lane_u8(data, 4), vgetq_lane_u8(data, 4), vgetq_lane_u8(data, 5), vgetq_lane_u8(data, 5),
                                       vgetq_lane_u8(data, 6), vgetq_lane_u8(data, 6), vgetq_lane_u8(data, 7), vgetq_lane_u8(data, 7)
                                     };
        const uint8x16_t data_out2 =
        {
            vgetq_lane_u8(data, 8), vgetq_lane_u8(data, 8), vgetq_lane_u8(data, 9), vgetq_lane_u8(data, 9),
            vgetq_lane_u8(data, 10), vgetq_lane_u8(data, 10), vgetq_lane_u8(data, 11), vgetq_lane_u8(data, 11),
            vgetq_lane_u8(data, 12), vgetq_lane_u8(data, 12), vgetq_lane_u8(data, 13), vgetq_lane_u8(data, 13),
            vgetq_lane_u8(data, 14), vgetq_lane_u8(data, 14), vgetq_lane_u8(data, 15), vgetq_lane_u8(data, 15)
        };
        auto out = reinterpret_cast<uint8_t *>(output.ptr());

        vst1q_u8(out, data_out1);
        vst1q_u8(out + 16, data_out2);
        vst1q_u8(out + offset_y_out, data_out1);
        vst1q_u8(out + offset_y_out + 16, data_out2);
    },
    input, output);
}

void NEUpsampleLayerKernel::upsample_qasymm8_nhwc(const arm_compute::Window &window)
{
    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x()));
    window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y()));

    Iterator input(_input, window);
    Iterator output(_output, window_out);

    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(uint8_t);
    const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(uint8_t);
    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const uint8x16_t data = vld1q_u8(reinterpret_cast<const uint8_t *>(input.ptr()));
        auto             out  = reinterpret_cast<uint8_t *>(output.ptr());

        vst1q_u8(out, data);
        vst1q_u8(out + offset_y_out, data);
        vst1q_u8(out + offset_z_out, data);
        vst1q_u8(out + offset_y_out + offset_z_out, data);
    },
    input, output);
}

void NEUpsampleLayerKernel::upsample_f16_nchw(const arm_compute::Window &window)
{
    ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x));

    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y()));

    Iterator  input(_input, window_in);
    Iterator  output(_output, window_out);
    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float16_t);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const float16x8_t data      = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr()));
        const float16x8_t data_out1 = { vgetq_lane_f16(data, 0), vgetq_lane_f16(data, 0), vgetq_lane_f16(data, 1), vgetq_lane_f16(data, 1),
                                        vgetq_lane_f16(data, 2), vgetq_lane_f16(data, 2), vgetq_lane_f16(data, 3), vgetq_lane_f16(data, 3)
                                      };
        const float16x8_t data_out2 = { vgetq_lane_f16(data, 4), vgetq_lane_f16(data, 4), vgetq_lane_f16(data, 5), vgetq_lane_f16(data, 5),
                                        vgetq_lane_f16(data, 6), vgetq_lane_f16(data, 6), vgetq_lane_f16(data, 7), vgetq_lane_f16(data, 7)
                                      };
        auto out = reinterpret_cast<float16_t *>(output.ptr());

        vst1q_f16(out, data_out1);
        vst1q_f16(out + 8, data_out2);
        vst1q_f16(out + offset_y_out, data_out1);
        vst1q_f16(out + offset_y_out + 8, data_out2);
    },
    input, output);
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
}

void NEUpsampleLayerKernel::upsample_f16_nhwc(const arm_compute::Window &window)
{
    ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Window window_out(window);
    window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x()));
    window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y()));

    Iterator  input(_input, window);
    Iterator  output(_output, window_out);
    const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float16_t);
    const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(float16_t);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr()));
        auto              out  = reinterpret_cast<float16_t *>(output.ptr());

        vst1q_f16(out, data);
        vst1q_f16(out + offset_y_out, data);
        vst1q_f16(out + offset_z_out, data);
        vst1q_f16(out + offset_y_out + offset_z_out, data);
    },
    input, output);
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
}

void NEUpsampleLayerKernel::configure(const ITensor *input, ITensor *output, const Size2D &info, const InterpolationPolicy policy)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_UNUSED(policy);

    _input  = input;
    _output = output;
    _info   = info;

    const DataLayout data_layout = input->info()->data_layout();

    TensorShape output_shape = misc::shape_calculator::compute_upsample_shape(*input->info(), info);
    auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type());
    output->info()->set_data_layout(data_layout);

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(NEUpsampleLayerKernel::validate(input->info(), output->info(), info, policy));

    _num_elems_processed_per_iteration_x = 16 / output->info()->element_size();

    switch(data_layout)
    {
        case DataLayout::NCHW:
        {
            switch(input->info()->data_type())
            {
                case DataType::QASYMM8:
                    _func = &NEUpsampleLayerKernel::upsample_qasymm8_nchw;
                    break;
                case DataType::F32:
                    _func = &NEUpsampleLayerKernel::upsample_f32_nchw;
                    break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
                case DataType::F16:
                    _func = &NEUpsampleLayerKernel::upsample_f16_nchw;
                    break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
                default:
                    ARM_COMPUTE_ERROR("Not implemented");
            }
            break;
        }
        case DataLayout::NHWC:
        {
            switch(input->info()->data_type())
            {
                case DataType::QASYMM8:
                    _func = &NEUpsampleLayerKernel::upsample_qasymm8_nhwc;
                    break;
                case DataType::F32:
                    _func = &NEUpsampleLayerKernel::upsample_f32_nhwc;
                    break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
                case DataType::F16:
                    _func = &NEUpsampleLayerKernel::upsample_f16_nhwc;
                    break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
                default:
                    ARM_COMPUTE_ERROR("Not implemented");
            }
            break;
        }
        default:
            ARM_COMPUTE_ERROR("Not implemented");
    }

    // Configure window
    std::pair<Status, Window> win_config = validate_and_configure_window(input->info(),
                                                                         output->info(),
                                                                         _num_elems_processed_per_iteration_x,
                                                                         info);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

void NEUpsampleLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (this->*_func)(window);
}
} // namespace arm_compute