aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NETransposeKernel.cpp
blob: 870d2c9660718e785f1c7636786d1c32eb6dc82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NETransposeKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"

#include <arm_neon.h>

using namespace arm_compute;

namespace arm_compute
{
class Coordinates;
} // namespace arm_compute

namespace
{
TensorShape transposed_tensor_shape(const TensorShape &in)
{
    TensorShape  output_shape{ in };
    const size_t w_out = in[1];
    const size_t h_out = in[0];
    output_shape.set(0, w_out);
    output_shape.set(1, h_out);

    return output_shape;
}

unsigned int num_elems_processed(size_t element_size)
{
    switch(element_size)
    {
        case 1:
            return 8;
            break;
        case 2:
            return 4;
            break;
        case 4:
            return 4;
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }
}

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
{
    //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QASYMM8, DataType::U16, DataType::S16, DataType::U32, DataType::S32,
                                                         DataType::F16,
                                                         DataType::F32);

    if(output->total_size() != 0)
    {
        const TensorInfo tensor_info = input->clone()->set_tensor_shape(transposed_tensor_shape(input->tensor_shape()));

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
    // Note: This kernel performs 16 elements per iteration.
    // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
    // For this reason num_elems_processed_per_iteration_x is set to 1
    const unsigned int num_elems_processed_per_iteration_x = 1;
    const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(input->element_size());

    // Configure kernel window
    Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

    AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
    bool                  window_changed = update_window_and_padding(win, input_access);

    if(output->total_size() != 0)
    {
        AccessWindowTranspose output_access(output, 0, 0, num_elems_processed_per_iteration_y, num_elems_processed_per_iteration_x);

        window_changed = window_changed || update_window_and_padding(win, output_access);

        output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int    window_step_x            = 8;
    const int    window_step_y            = 8;
    const int    window_start_x           = window.x().start();
    const int    window_end_x             = window.x().end();
    const int    window_start_y           = window.y().start();
    const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if(left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if(window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the NEON path if and only if the input is not a row-vector
    if(in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            // Compute 8x8 elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
                const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
                const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
                const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
                const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
                const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
                const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
                const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));

                // Transpose 2x2
                const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
                const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
                const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
                const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);

                // Transpose 4x4
                const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
                const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
                const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
                const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));

                // Transpose 8x8
                const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
                const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
                const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
                const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;

                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
                vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
            }

            // Compute left-over elements along the x dimension (1x8)
            for(; x < window_end_x; ++x)
            {
                const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
                const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
                const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
                const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
                const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
                const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
                const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
                const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);

                uint8x8_t result = vdup_n_u8(0);
                result           = vset_lane_u8(val0, result, 0);
                result           = vset_lane_u8(val1, result, 1);
                result           = vset_lane_u8(val2, result, 2);
                result           = vset_lane_u8(val3, result, 3);
                result           = vset_lane_u8(val4, result, 4);
                result           = vset_lane_u8(val5, result, 5);
                result           = vset_lane_u8(val6, result, 6);
                result           = vset_lane_u8(val7, result, 7);

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;

                vst1_u8(output.ptr() + dst_offset_in_bytes, result);
            }
        },
        input, output);
    }

    if(left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            const uint8_t val0 = *input.ptr();

            // Compute destination address
            const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;

            *(output.ptr() + dst_offset_in_bytes) = val0;
        },
        input, output);
    }
}

void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int    window_step_x            = 4;
    const int    window_step_y            = 4;
    const int    window_start_x           = window.x().start();
    const int    window_end_x             = window.x().end();
    const int    window_start_y           = window.y().start();
    const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if(left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if(window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the NEON path if and only if the input is not a row-vector
    if(in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            // Compute 4x4 elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                // Transpose 2x2
                const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
                const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);

                // Transpose 4x4
                const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
                const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;

                vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
                vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
                vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
                vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
            }

            // Compute left-over elements (1x4)
            for(; x < window_end_x; ++x)
            {
                const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                uint16x4_t result = vdup_n_u16(0);
                result            = vset_lane_u16(val0, result, 0);
                result            = vset_lane_u16(val1, result, 1);
                result            = vset_lane_u16(val2, result, 2);
                result            = vset_lane_u16(val3, result, 3);

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;

                vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
            }
        },
        input, output);
    }

    if(left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));

            // Compute destination address
            const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;

            *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
        },
        input, output);
    }
}

void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int    window_step_x            = 4;
    const int    window_step_y            = 4;
    const int    window_start_x           = window.x().start();
    const int    window_end_x             = window.x().end();
    const int    window_start_y           = window.y().start();
    const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if(left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if(window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the NEON path if and only if the input is not a row-vector
    if(in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            // Compute 4x4 elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                // Transpose 2x2
                const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
                const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
                const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
                const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                // Swap block 01 with block 10 and store
                vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
                vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
                vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
                vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
            }

            // Compute left-over elements (1x4)
            for(; x < window_end_x; ++x)
            {
                const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                uint32x4_t result = vdupq_n_u32(0);
                result            = vsetq_lane_u32(val0, result, 0);
                result            = vsetq_lane_u32(val1, result, 1);
                result            = vsetq_lane_u32(val2, result, 2);
                result            = vsetq_lane_u32(val3, result, 3);

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
            }
        },
        input, output);
    }

    if(left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(window_in, [&](const Coordinates & id)
        {
            const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));

            // Compute destination address
            const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;

            *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
        },
        input, output);
    }
}
} // namespace

Status NETransposeKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
    return Status{};
}

NETransposeKernel::NETransposeKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr)
{
}

void NETransposeKernel::configure(const ITensor *input, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);

    // Output tensor auto inizialitation if not yet initialized
    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(transposed_tensor_shape(input->info()->tensor_shape())));

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info()));

    _input  = input;
    _output = output;

    switch(input->info()->element_size())
    {
        case 1:
            _func = &transpose_8bit_elements;
            break;
        case 2:
            _func = &transpose_16bit_elements;
            break;
        case 4:
            _func = &transpose_32bit_elements;
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

void NETransposeKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (*_func)(_input, _output, window);
}