aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEReverseKernel.cpp
blob: 08a9825df95c54c363caa6a2e4f426ef36f362fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEReverseKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/QAsymm8.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <arm_neon.h>
#include <array>
#include <cmath>
#include <map>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *axis)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, axis);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QASYMM8,
                                                         DataType::U16, DataType::S16,
                                                         DataType::U32, DataType::S32,
                                                         DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(axis, 1, DataType::U32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis->num_dimensions() > 1, "Axis must be a 1D tensor");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis->dimension(0) > 4, "Only up to 4 dimensions can be reversed");

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
    }

    return Status{};
}
} // namespace

NEReverseKernel::NEReverseKernel()
    : _input(nullptr), _output(nullptr), _axis(nullptr)
{
}

void NEReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *axis)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, axis);

    _input  = input;
    _output = output;
    _axis   = axis;

    // Output tensor auto initialization if not yet initialized
    auto_init_if_empty(*output->info(), *input->info()->clone());

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), axis->info()));

    // Configure kernel window
    INEKernel::configure(calculate_max_window(*output->info()));
}

Status NEReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *axis)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, axis));

    return Status{};
}

template <typename T>
void run_reverse(const Window &window, const ITensor *input, const ITensor *axis, ITensor *output)
{
    int axis_bit = 0;
    for(unsigned int i = 0; i < axis->info()->dimension(0); ++i)
    {
        const int axis_i = *(reinterpret_cast<const int *>(axis->buffer()) + i);
        axis_bit |= 1 << axis_i;
    }

    // Check if we need a left-over loop for the y dimension
    const int window_step_x            = 16 / input->info()->element_size();
    const int window_start_x           = window.x().start();
    const int window_end_x             = std::min(window.x().end(), static_cast<int>(input->info()->dimension(0)));
    const int window_end_x_multiple_of = ((window_end_x - window_start_x) / window_step_x) * window_step_x;
    bool      left_over_loop_x         = (((window_end_x - window_start_x) % window_step_x) != 0);

    Window slice = window.first_slice_window_4D();

    if(left_over_loop_x)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if(window_end_x_multiple_of > window_start_x)
        {
            slice.set(Window::DimX, Window::Dimension(window_start_x, window_end_x_multiple_of, window_step_x));
        }
        else
        {
            slice.set(Window::DimX, Window::Dimension(0, 0, 1));
        }
    }

    do
    {
        Iterator input_it(input, slice);
        execute_window_loop(slice, [&](const Coordinates & id)
        {
            auto in = wrapper::vloadq(reinterpret_cast<T *>(input_it.ptr()));

            // Reverse 0 axis
            if(axis_bit & 0x1)
            {
                in = wrapper::vrev64(in);
                in = wrapper::vcombine(wrapper::vgethigh(in), wrapper::vgetlow(in));
            }

            const int offset_x = (axis_bit & 0x1) ? output->info()->dimension(0) - id.x() - window_step_x : id.x();
            const int offset_y = (axis_bit & 0x2) ? output->info()->dimension(1) - id.y() - 1 : id.y();
            const int offset_z = (axis_bit & 0x4) ? output->info()->dimension(2) - id.z() - 1 : id.z();
            const int offset_w = (axis_bit & 0x8) ? output->info()->dimension(3) - id[3] - 1 : id[3];

            auto out_ptr = reinterpret_cast<T *>(output->ptr_to_element(Coordinates(offset_x, offset_y, offset_z, offset_w)));
            wrapper::vstore(out_ptr, in);
        },
        input_it);

        if(left_over_loop_x)
        {
            slice.set(Window::DimX, Window::Dimension(window_end_x_multiple_of, window_end_x, 1));

            Iterator input_it(input, slice);

            // Compute left-over elements along the y dimension (1x1)
            execute_window_loop(slice, [&](const Coordinates & id)
            {
                const auto in = *reinterpret_cast<T *>(input_it.ptr());

                const int offset_x = (axis_bit & 0x1) ? output->info()->dimension(0) - id.x() - 1 : id.x();
                const int offset_y = (axis_bit & 0x2) ? output->info()->dimension(1) - id.y() - 1 : id.y();
                const int offset_z = (axis_bit & 0x4) ? output->info()->dimension(2) - id.z() - 1 : id.z();
                const int offset_w = (axis_bit & 0x8) ? output->info()->dimension(3) - id[3] - 1 : id[3];

                *reinterpret_cast<T *>(output->ptr_to_element(Coordinates(offset_x, offset_y, offset_z, offset_w))) = in;
            },
            input_it);
        }

    }
    while(window.slide_window_slice_4D(slice));
}

void NEReverseKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    switch(_input->info()->data_type())
    {
        case DataType::F32:
            run_reverse<float>(window, _input, _axis, _output);
            break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            run_reverse<float16_t>(window, _input, _axis, _output);
            break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::U32:
            run_reverse<uint32_t>(window, _input, _axis, _output);
            break;
        case DataType::S32:
            run_reverse<int32_t>(window, _input, _axis, _output);
            break;
        case DataType::S16:
            run_reverse<int16_t>(window, _input, _axis, _output);
            break;
        case DataType::U16:
            run_reverse<uint16_t>(window, _input, _axis, _output);
            break;
        case DataType::QASYMM8:
        case DataType::U8:
            run_reverse<uint8_t>(window, _input, _axis, _output);
            break;
        case DataType::S8:
            run_reverse<int8_t>(window, _input, _axis, _output);
            break;
        default:
            ARM_COMPUTE_ERROR("Data type not supported");
    }
}
} // namespace arm_compute