aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEROIPoolingLayerKernel.cpp
blob: 1a3810fb56e07f9d55a95a5c1edf75ee4519a54a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/NEON/kernels/NEROIPoolingLayerKernel.h"

#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/ToolchainSupport.h"

#include <cfloat>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo         *input,
                          const ITensorInfo         *rois,
                          const ITensorInfo         *output,
                          const ROIPoolingLayerInfo &pool_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output, rois);

    //Validate arguments
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(rois, DataType::U16);
    ARM_COMPUTE_RETURN_ERROR_ON(rois->dimension(0) != 5);
    ARM_COMPUTE_RETURN_ERROR_ON(rois->num_dimensions() > 2);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F32, DataType::QASYMM8);
    ARM_COMPUTE_RETURN_ERROR_ON((pool_info.pooled_width() == 0) || (pool_info.pooled_height() == 0));

    if (output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(0) != pool_info.pooled_width()) ||
                                    (output->dimension(1) != pool_info.pooled_height()));
        ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(2) != output->dimension(2));
        ARM_COMPUTE_RETURN_ERROR_ON(rois->dimension(1) != output->dimension(3));
    }

    return Status{};
}

/** Evaluate number needing to be stored in output tensor as quantized format.
 *
 * @param[in]  input          Source tensor. Data types supported: QASYMM8
 * @param[out] output         Destination tensor. Where output value will be stored, same datatype as input
 * @param[in]  region_start_x Beginning region of x coordinate of pooling region
 * @param[in]  region_start_y Beginning region of y coordinate of pooling region
 * @param[in]  region_end_x   End of pooling region, x coordinate
 * @param[in]  region_end_y   End of pooling region, y coordinate
 * @param[in]  fm             Channel index of coordinate in output Tensor to store value
 * @param[in]  px             Width index of coodinate in output Tensor to store value
 * @param[in]  py             Height index of coordinate in output Tensor to store value
 * @param[in]  roi_batch      Index of image to perform Pooling on in input Tensor
 * @param[in]  roi_indx       Index of image of coordinate in output Tensor to store value
 */
template <typename T>
void template_eval(const ITensor *input,
                   const ITensor *output,
                   int            region_start_x,
                   int            region_start_y,
                   int            region_end_x,
                   int            region_end_y,
                   int            fm,
                   int            px,
                   int            py,
                   int            roi_batch,
                   int            roi_indx)
{
    if ((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
    {
        *reinterpret_cast<T *>(output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = 0;
    }
    else
    {
        T curr_max = std::numeric_limits<T>::lowest(); // Min value of typename T
        for (int j = region_start_y; j < region_end_y; ++j)
        {
            for (int i = region_start_x; i < region_end_x; ++i)
            {
                const auto val = *reinterpret_cast<const T *>(input->ptr_to_element(Coordinates(i, j, fm, roi_batch)));
                curr_max       = std::max(val, curr_max);
            }
        }

        // if quantized datatype, requantize then store in output tensor
        if (is_data_type_quantized(input->info()->data_type()))
        {
            // covert qasymm to new output quantization scale and offset
            UniformQuantizationInfo uqinfo = compute_requantization_scale_offset(
                input->info()->quantization_info().uniform(), output->info()->quantization_info().uniform());
            *reinterpret_cast<T *>(output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) =
                quantize_qasymm8(curr_max, uqinfo);
        }
        else
        {
            *reinterpret_cast<T *>(output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = curr_max;
        }
    }
}
} // namespace

NEROIPoolingLayerKernel::NEROIPoolingLayerKernel()
    : _input(nullptr), _rois(nullptr), _output(nullptr), _pool_info(0, 0, 0.f)
{
}

Status NEROIPoolingLayerKernel::validate(const ITensorInfo         *input,
                                         const ITensorInfo         *rois,
                                         const ITensorInfo         *output,
                                         const ROIPoolingLayerInfo &pool_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, rois, output, pool_info));
    return Status{};
}

void NEROIPoolingLayerKernel::configure(const ITensor             *input,
                                        const ITensor             *rois,
                                        const ITensor             *output,
                                        const ROIPoolingLayerInfo &pool_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, rois);

    //Validate arguments
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), rois->info(), output->info(), pool_info));

    // Output auto initialization if not yet initialized
    TensorShape output_shape(pool_info.pooled_width(), pool_info.pooled_height(), input->info()->dimension(2),
                             rois->info()->dimension(1));

    auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(),
                       output->info()->quantization_info());

    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pool_info.pooled_width()) ||
                         (output->info()->dimension(1) != pool_info.pooled_height()));

    // Set instance variables
    _input     = input;
    _rois      = rois;
    _output    = output;
    _pool_info = pool_info;

    // Configure kernel window
    Window window;
    window.set(Window::DimX, Window::Dimension(0, rois->info()->dimension(1)));
    window.set(Window::DimY, Window::Dimension(0, 1));

    INEKernel::configure(window);
}

void NEROIPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    const size_t values_per_roi = _rois->info()->dimension(0);

    const int   roi_list_start = window.x().start();
    const int   roi_list_end   = window.x().end();
    const int   width          = _input->info()->dimension(Window::DimX);
    const int   height         = _input->info()->dimension(Window::DimY);
    const int   fms            = _input->info()->dimension(Window::DimZ);
    const int   pooled_w       = _pool_info.pooled_width();
    const int   pooled_h       = _pool_info.pooled_height();
    const float spatial_scale  = _pool_info.spatial_scale();

    const auto *rois_ptr  = reinterpret_cast<const uint16_t *>(_rois->buffer());
    const auto  data_type = _input->info()->data_type();

    for (int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx)
    {
        const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx];
        const auto         x1        = rois_ptr[values_per_roi * roi_indx + 1];
        const auto         y1        = rois_ptr[values_per_roi * roi_indx + 2];
        const auto         x2        = rois_ptr[values_per_roi * roi_indx + 3];
        const auto         y2        = rois_ptr[values_per_roi * roi_indx + 4];

        // Scale ROI
        const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale);
        const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale);
        const int roi_width    = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f);
        const int roi_height   = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f);

        // Iterate through all feature maps
        for (int fm = 0; fm < fms; ++fm)
        {
            // Iterate through all output pixels
            for (int py = 0; py < pooled_h; ++py)
            {
                for (int px = 0; px < pooled_w; ++px)
                {
                    auto region_start_x = static_cast<int>(std::floor((static_cast<float>(px) / pooled_w) * roi_width));
                    auto region_end_x =
                        static_cast<int>(std::floor((static_cast<float>(px + 1) / pooled_w) * roi_width));
                    auto region_start_y =
                        static_cast<int>(std::floor((static_cast<float>(py) / pooled_h) * roi_height));
                    auto region_end_y =
                        static_cast<int>(std::floor((static_cast<float>(py + 1) / pooled_h) * roi_height));

                    region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width);
                    region_end_x   = std::min(std::max(region_end_x + roi_anchor_x, 0), width);
                    region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height);
                    region_end_y   = std::min(std::max(region_end_y + roi_anchor_y, 0), height);

                    switch (data_type)
                    {
                        case DataType::F32:
                            template_eval<float>(_input, _output, region_start_x, region_start_y, region_end_x,
                                                 region_end_y, fm, px, py, roi_batch, roi_indx);
                            break;
                        case DataType::QASYMM8:
                            template_eval<qasymm8_t>(_input, _output, region_start_x, region_start_y, region_end_x,
                                                     region_end_y, fm, px, py, roi_batch, roi_indx);
                            break;
                        default:
                            ARM_COMPUTE_ERROR("DataType not Supported");
                            break;
                    }
                }
            }
        }
    }
}
} // namespace arm_compute