aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEPriorBoxLayerKernel.cpp
blob: 808b68a0d7a258f0ab7a5ca77e8db4a5a227f756 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (c) 2018-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEPriorBoxLayerKernel.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"

#include <arm_neon.h>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const PriorBoxLayerInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input1, input2);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);

    // Check variances
    const int var_size = info.variances().size();
    if(var_size > 1)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(var_size != 4, "Must provide 4 variance values");
        for(int i = 0; i < var_size; ++i)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MSG(var_size <= 0, "Must be greater than 0");
        }
    }
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.steps()[0] < 0.f, "Step x should be greater or equal to 0");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.steps()[1] < 0.f, "Step y should be greater or equal to 0");

    if(!info.max_sizes().empty())
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_sizes().size() != info.min_sizes().size(), "Max and min sizes dimensions should match");
    }

    for(unsigned int i = 0; i < info.max_sizes().size(); ++i)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_sizes()[i] < info.min_sizes()[i], "Max size should be greater than min size");
    }

    if(output != nullptr && output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != 2);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
    }

    return Status{};
}
} // namespace

NEPriorBoxLayerKernel::NEPriorBoxLayerKernel()
    : _input1(nullptr), _input2(nullptr), _output(nullptr), _info()
{
}

void NEPriorBoxLayerKernel::store_coordinates(float *out, const int offset, const float center_x, const float center_y, const float box_width, const float box_height, const int width,
                                              const int height)
{
    float xmin = (center_x - box_width / 2.f) / width;
    float ymin = (center_y - box_height / 2.f) / height;
    float xmax = (center_x + box_width / 2.f) / width;
    float ymax = (center_y + box_height / 2.f) / height;

    float32x4_t vec_elements = { xmin, ymin, xmax, ymax };
    if(_info.clip())
    {
        static const float32x4_t CONST_0 = vdupq_n_f32(0.f);
        static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
        vec_elements                     = vmaxq_f32(vminq_f32(vec_elements, CONST_1), CONST_0);
    }
    vst1q_f32(out + offset, vec_elements);
}

void NEPriorBoxLayerKernel::calculate_prior_boxes(const Window &window)
{
    const int num_priors = _info.aspect_ratios().size() * _info.min_sizes().size() + _info.max_sizes().size();

    const DataLayout data_layout = _input1->info()->data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    const int layer_width  = _input1->info()->dimension(width_idx);
    const int layer_height = _input1->info()->dimension(height_idx);

    int img_width  = _info.img_size().x;
    int img_height = _info.img_size().y;
    if(img_width == 0 || img_height == 0)
    {
        img_width  = _input2->info()->dimension(width_idx);
        img_height = _input2->info()->dimension(height_idx);
    }

    float step_x = _info.steps()[0];
    float step_y = _info.steps()[1];
    if(step_x == 0.f || step_y == 0.f)
    {
        step_x = static_cast<float>(img_width) / layer_width;
        step_y = static_cast<float>(img_height) / layer_height;
    }

    Window slice = window.first_slice_window_2D();
    slice.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), 2));

    Iterator output(_output, slice);
    execute_window_loop(slice, [&](const Coordinates & id)
    {
        float center_x = 0;
        float center_y = 0;
        int   idx      = id.x() / (4 * num_priors);
        center_x       = (static_cast<float>(idx % layer_width) + _info.offset()) * step_x;
        center_y       = (static_cast<float>(idx / layer_width) + _info.offset()) * step_y;

        float box_width;
        float box_height;
        int   offset = 0;

        auto out = reinterpret_cast<float *>(output.ptr());
        for(unsigned int i = 0; i < _info.min_sizes().size(); ++i)
        {
            const float min_size = _info.min_sizes().at(i);
            box_width            = min_size;
            box_height           = min_size;
            store_coordinates(out, offset, center_x, center_y, box_width, box_height, img_width, img_height);
            offset += 4;

            if(!_info.max_sizes().empty())
            {
                const float max_size = _info.max_sizes().at(i);
                box_width            = std::sqrt(min_size * max_size);
                box_height           = box_width;

                store_coordinates(out, offset, center_x, center_y, box_width, box_height, img_width, img_height);
                offset += 4;
            }

            // rest of priors
            for(auto ar : _info.aspect_ratios())
            {
                if(fabs(ar - 1.) < 1e-6)
                {
                    continue;
                }

                box_width  = min_size * sqrt(ar);
                box_height = min_size / sqrt(ar);

                store_coordinates(out, offset, center_x, center_y, box_width, box_height, img_width, img_height);
                offset += 4;
            }
        }

        // set the variance
        out = reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(id.x(), 1)));
        float32x4_t var;
        if(_info.variances().size() == 1)
        {
            var = vdupq_n_f32(_info.variances().at(0));
        }
        else
        {
            const float32x4_t vars = { _info.variances().at(0), _info.variances().at(1), _info.variances().at(2), _info.variances().at(3) };
            var                    = vars;
        }
        for(int i = 0; i < num_priors; ++i)
        {
            vst1q_f32(out + 4 * i, var);
        }
    },
    output);
}

void NEPriorBoxLayerKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, const PriorBoxLayerInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), info));

    _input1 = input1;
    _input2 = input2;
    _info   = info;
    _output = output;

    // Configure kernel window
    const int   num_priors = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size();
    Window      win        = calculate_max_window(*output->info(), Steps(num_priors * 4));
    Coordinates coord;
    coord.set_num_dimensions(output->info()->num_dimensions());
    output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));

    INEKernel::configure(win);
}

Status NEPriorBoxLayerKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const PriorBoxLayerInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, info));

    return Status{};
}
void NEPriorBoxLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    // Run function
    calculate_prior_boxes(window);
}
} // namespace arm_compute