aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEHOGDetectorKernel.cpp
blob: 8f523998d8f57d1ded7ad44f8be1afefc9078b2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright (c) 2016-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEHOGDetectorKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/HOGInfo.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/Validate.h"

#include <arm_neon.h>

using namespace arm_compute;

NEHOGDetectorKernel::NEHOGDetectorKernel()
    : _input(nullptr), _detection_windows(), _hog_descriptor(nullptr), _bias(0.0f), _threshold(0.0f), _idx_class(0), _num_bins_per_descriptor_x(0), _num_blocks_per_descriptor_y(0), _block_stride_width(0),
      _block_stride_height(0), _detection_window_width(0), _detection_window_height(0), _max_num_detection_windows(0), _mutex()
{
}

void NEHOGDetectorKernel::configure(const ITensor *input, const IHOG *hog, IDetectionWindowArray *detection_windows, const Size2D &detection_window_stride, float threshold, uint16_t idx_class)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F32);
    ARM_COMPUTE_ERROR_ON(hog == nullptr);
    ARM_COMPUTE_ERROR_ON(detection_windows == nullptr);
    ARM_COMPUTE_ERROR_ON((detection_window_stride.width % hog->info()->block_stride().width) != 0);
    ARM_COMPUTE_ERROR_ON((detection_window_stride.height % hog->info()->block_stride().height) != 0);

    const Size2D &detection_window_size = hog->info()->detection_window_size();
    const Size2D &block_size            = hog->info()->block_size();
    const Size2D &block_stride          = hog->info()->block_stride();

    _input                       = input;
    _detection_windows           = detection_windows;
    _threshold                   = threshold;
    _idx_class                   = idx_class;
    _hog_descriptor              = hog->descriptor();
    _bias                        = _hog_descriptor[hog->info()->descriptor_size() - 1];
    _num_bins_per_descriptor_x   = ((detection_window_size.width - block_size.width) / block_stride.width + 1) * input->info()->num_channels();
    _num_blocks_per_descriptor_y = (detection_window_size.height - block_size.height) / block_stride.height + 1;
    _block_stride_width          = block_stride.width;
    _block_stride_height         = block_stride.height;
    _detection_window_width      = detection_window_size.width;
    _detection_window_height     = detection_window_size.height;
    _max_num_detection_windows   = detection_windows->max_num_values();

    ARM_COMPUTE_ERROR_ON((_num_bins_per_descriptor_x * _num_blocks_per_descriptor_y + 1) != hog->info()->descriptor_size());

    // Get the number of blocks along the x and y directions of the input tensor
    const ValidRegion &valid_region = input->info()->valid_region();
    const size_t       num_blocks_x = valid_region.shape[0];
    const size_t       num_blocks_y = valid_region.shape[1];

    // Get the number of blocks along the x and y directions of the detection window
    const size_t num_blocks_per_detection_window_x = detection_window_size.width / block_stride.width;
    const size_t num_blocks_per_detection_window_y = detection_window_size.height / block_stride.height;

    const size_t window_step_x = detection_window_stride.width / block_stride.width;
    const size_t window_step_y = detection_window_stride.height / block_stride.height;

    // Configure kernel window
    Window win;
    win.set(Window::DimX, Window::Dimension(0, floor_to_multiple(num_blocks_x - num_blocks_per_detection_window_x, window_step_x) + window_step_x, window_step_x));
    win.set(Window::DimY, Window::Dimension(0, floor_to_multiple(num_blocks_y - num_blocks_per_detection_window_y, window_step_y) + window_step_y, window_step_y));

    constexpr unsigned int num_elems_read_per_iteration = 1;
    const unsigned int     num_rows_read_per_iteration  = _num_blocks_per_descriptor_y;

    update_window_and_padding(win, AccessWindowRectangle(input->info(), 0, 0, num_elems_read_per_iteration, num_rows_read_per_iteration));

    INEKernel::configure(win);
}

void NEHOGDetectorKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_hog_descriptor == nullptr);

    const size_t in_step_y = _input->info()->strides_in_bytes()[Window::DimY] / data_size_from_type(_input->info()->data_type());

    Iterator in(_input, window);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto *in_row_ptr = reinterpret_cast<const float *>(in.ptr());

        // Init score_f32 with 0
        float32x4_t score_f32 = vdupq_n_f32(0.0f);

        // Init score with bias
        float score = _bias;

        // Compute Linear SVM
        for(size_t yb = 0; yb < _num_blocks_per_descriptor_y; ++yb, in_row_ptr += in_step_y)
        {
            int32_t xb = 0;

            const int32_t offset_y = yb * _num_bins_per_descriptor_x;

            for(; xb < static_cast<int32_t>(_num_bins_per_descriptor_x) - 16; xb += 16)
            {
                // Load descriptor values
                const float32x4x4_t a_f32 =
                {
                    {
                        vld1q_f32(&in_row_ptr[xb + 0]),
                        vld1q_f32(&in_row_ptr[xb + 4]),
                        vld1q_f32(&in_row_ptr[xb + 8]),
                        vld1q_f32(&in_row_ptr[xb + 12])
                    }
                };

                // Load detector values
                const float32x4x4_t b_f32 =
                {
                    {
                        vld1q_f32(&_hog_descriptor[xb + 0 + offset_y]),
                        vld1q_f32(&_hog_descriptor[xb + 4 + offset_y]),
                        vld1q_f32(&_hog_descriptor[xb + 8 + offset_y]),
                        vld1q_f32(&_hog_descriptor[xb + 12 + offset_y])
                    }
                };

                // Multiply accumulate
                score_f32 = vmlaq_f32(score_f32, a_f32.val[0], b_f32.val[0]);
                score_f32 = vmlaq_f32(score_f32, a_f32.val[1], b_f32.val[1]);
                score_f32 = vmlaq_f32(score_f32, a_f32.val[2], b_f32.val[2]);
                score_f32 = vmlaq_f32(score_f32, a_f32.val[3], b_f32.val[3]);
            }

            for(; xb < static_cast<int32_t>(_num_bins_per_descriptor_x); ++xb)
            {
                const float a = in_row_ptr[xb];
                const float b = _hog_descriptor[xb + offset_y];

                score += a * b;
            }
        }

        score += vgetq_lane_f32(score_f32, 0);
        score += vgetq_lane_f32(score_f32, 1);
        score += vgetq_lane_f32(score_f32, 2);
        score += vgetq_lane_f32(score_f32, 3);

        if(score > _threshold)
        {
            if(_detection_windows->num_values() < _max_num_detection_windows)
            {
                DetectionWindow win;
                win.x         = (id.x() * _block_stride_width);
                win.y         = (id.y() * _block_stride_height);
                win.width     = _detection_window_width;
                win.height    = _detection_window_height;
                win.idx_class = _idx_class;
                win.score     = score;

                arm_compute::unique_lock<arm_compute::Mutex> lock(_mutex);
                _detection_windows->push_back(win);
                lock.unlock();
            }
        }
    },
    in);
}