aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NECropKernel.cpp
blob: b6fe5819e4e6da4ce407a5a50618c9632befbaf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NECropKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Window.h"

#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/helpers/bit_ops.h"
#include "arm_compute/core/utils/helpers/tensor_transform.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

#include <map>

namespace arm_compute
{
namespace
{
template <typename T>
inline float32x4_t load_as_f32(T *ptr)
{
    ARM_COMPUTE_UNUSED(ptr);
    ARM_COMPUTE_ERROR("Type not supported.");
}

template <>
inline float32x4_t load_as_f32(float *ptr)
{
    return wrapper::vloadq(ptr);
}

template <>
inline float32x4_t load_as_f32(int32_t *ptr)
{
    return vcvtq_f32_s32(wrapper::vloadq(ptr));
}

template <>
inline float32x4_t load_as_f32(uint32_t *ptr)
{
    return vcvtq_f32_u32(wrapper::vloadq(ptr));
}

template <>
inline float32x4_t load_as_f32(int16_t *ptr)
{
    return vcvtq_f32_s32(vmovl_s16(wrapper::vload(ptr)));
}

template <>
inline float32x4_t load_as_f32(uint16_t *ptr)
{
    return vcvtq_f32_u32(vmovl_u16(wrapper::vload(ptr)));
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float32x4_t load_as_f32(float16_t *ptr)
{
    return vcvt_f32_f16(wrapper::vload(ptr));
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

template <typename T, bool input_has_single_channel, bool is_width_flipped>
inline void in_bounds_crop_window(const ITensor *input, const ITensor *output, float *output_ptr, Coordinates input_offset,
                                  int32_t window_step_x, int32_t output_width_start, int32_t output_width_limit)
{
    // Reverse elements if width flipped.
    if(is_width_flipped)
    {
        // Collapse first dimension if possible.
        if(input_has_single_channel)
        {
            int32_t     x = output_width_start;
            Coordinates negative_offset(input_offset);
            negative_offset.set(1, negative_offset[1] - window_step_x + 1);
            for(; x <= output_width_limit - window_step_x; x += window_step_x, negative_offset[1] -= window_step_x)
            {
                auto in = load_as_f32(reinterpret_cast<T *>(input->ptr_to_element(negative_offset)));

                in = wrapper::vrev64(in);
                in = wrapper::vcombine(wrapper::vgethigh(in), wrapper::vgetlow(in));

                wrapper::vstore(output_ptr + x, in);
            }
            input_offset[1] = negative_offset[1] + window_step_x - 1;
            for(; x < output_width_limit; ++x, --input_offset[1])
            {
                *(output_ptr + x) = static_cast<float>(*reinterpret_cast<T *>(input->ptr_to_element(input_offset)));
            }
        }
        else
        {
            for(int32_t x = output_width_start; x < output_width_limit; ++x, --input_offset[1])
            {
                input_offset.set(0, 0);
                int32_t c = 0;
                for(; c <= static_cast<int32_t>(input->info()->dimension(0)) - window_step_x; c += window_step_x, input_offset[0] += window_step_x)
                {
                    auto in = load_as_f32(reinterpret_cast<T *>(input->ptr_to_element(input_offset)));
                    wrapper::vstore(output_ptr + x * output->info()->dimension(0) + c, in);
                }
                for(; c < static_cast<int32_t>(input->info()->dimension(0)); ++c, ++input_offset[0])
                {
                    *(output_ptr + x * output->info()->dimension(0) + c) = static_cast<float>(*reinterpret_cast<T *>(input->ptr_to_element(input_offset)));
                }
            }
        }
    }
    else
    {
        // Use memcpy if the elements don't need converting to float.
        if(std::is_same<T, float>::value)
        {
            memcpy(static_cast<void *>(output_ptr + output_width_start * output->info()->dimension(0)),
                   reinterpret_cast<const void *>(input->ptr_to_element(input_offset)),
                   (output_width_limit - output_width_start) * output->info()->dimension(0) * output->info()->element_size());
        }
        else
        {
            int32_t x                = 0;
            int32_t limit            = (output_width_limit - output_width_start) * static_cast<int32_t>(output->info()->dimension(0));
            float *output_start_ptr = output_ptr + output_width_start * output->info()->dimension(0);
            for(; x <= limit - window_step_x; x += window_step_x, input_offset[0] += window_step_x)
            {
                auto in = load_as_f32(reinterpret_cast<T *>(input->ptr_to_element(input_offset)));
                wrapper::vstore(output_start_ptr + x, in);
            }
            for(; x < limit; ++x, ++input_offset[0])
            {
                *(output_start_ptr + x) = static_cast<float>(*reinterpret_cast<T *>(input->ptr_to_element(input_offset)));
            }
        }
    }
}

inline void out_of_bounds_crop_window(const ITensor *output, float *output_ptr, float extrapolation_value,
                                      int32_t window_step_x, int32_t output_width_start, int32_t output_width_limit)
{
    auto    in               = wrapper::vdup_n(extrapolation_value, wrapper::traits::vector_128_tag());
    int32_t x                = 0;
    int32_t limit            = (output_width_limit - output_width_start) * static_cast<int32_t>(output->info()->dimension(0));
    float *output_start_ptr = output_ptr + output_width_start * output->info()->dimension(0);
    for(; x <= limit - window_step_x; x += window_step_x)
    {
        wrapper::vstore(output_start_ptr + x, in);
    }
    for(; x < limit; ++x)
    {
        *(output_start_ptr + x) = extrapolation_value;
    }
}

template <bool is_height_flipped, bool has_cols_in_bounds, bool has_cols_out_of_bounds_before, bool has_cols_out_of_bounds_after>
inline void execute_window(const ITensor *input, const ITensor *output, Coordinates input_offset, float extrapolation_value,
                           const uint32_t rows_out_of_bounds[], const uint32_t cols_out_of_bounds[], NECropKernel::InBoundsCropFunction *in_bounds_crop_function)
{
    // Output is always float.
    const int window_step_x = 16 / sizeof(float);
    auto     *output_ptr    = reinterpret_cast<float *>(output->buffer());
    //  Output window:
    //  --------------------------------
    //  |          Out of bounds       |
    //  |          rows before         |
    //  |------------------------------|
    //  | Out of | In         | Out of |
    //  | bounds | bounds     | bounds |
    //  | cols   | elements   | cols   |
    //  | before | copied     | after  |
    //  |        | from input |        |
    //  --------------------------------
    //  |        Out of bounds         |
    //  |        rows after            |
    //  |------------------------------|
    // Fill all output rows that have no elements that are within the input bounds with the extrapolation value.
    // First for the rows before the in bounds rows.
    out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, rows_out_of_bounds[0] * output->info()->dimension(1));
    output_ptr += rows_out_of_bounds[0] * output->info()->dimension(1) * output->info()->dimension(0);
    // Iterate through each row that has any elements within the input bounds.
    for(uint32_t row = rows_out_of_bounds[0]; static_cast<int32_t>(row) < static_cast<int32_t>(output->info()->dimension(2) - rows_out_of_bounds[1]);
        ++row, is_height_flipped ? --input_offset[2] : ++input_offset[2])
    {
        // Fill all elements in the row that are out of bounds with the extrapolation value.
        // First for the elements before the in bounds elements.
        if(has_cols_out_of_bounds_before)
        {
            out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, cols_out_of_bounds[0]);
        }
        // Copy all elements within the input bounds from the input tensor.
        if(has_cols_in_bounds)
        {
            (*in_bounds_crop_function)(input, output, output_ptr, input_offset, window_step_x, cols_out_of_bounds[0], output->info()->dimension(1) - cols_out_of_bounds[1]);
        }
        // Fill all elements after the in bounds elements with the extrapolation value.
        if(has_cols_out_of_bounds_after)
        {
            out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, output->info()->dimension(1) - cols_out_of_bounds[1], output->info()->dimension(1));
        }
        output_ptr += output->info()->dimension(1) * output->info()->dimension(0);
    }
    // Fill all rows after the in bounds elements with the extrapolation value.
    out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, rows_out_of_bounds[1] * output->info()->dimension(1));
}
} // namespace

NECropKernel::NECropKernel()
    : _input(nullptr), _crop_boxes(nullptr), _box_ind(nullptr), _output(nullptr), _start(), _end(), _crop_box_ind(0), _extrapolation_value(0), _rows_out_of_bounds(), _cols_out_of_bounds(),
      _in_bounds_crop_functions(), _in_bounds_crop_function(nullptr), _crop_function(nullptr)
{
}

void NECropKernel::configure(const ITensor *input, const ITensor *crop_boxes, const ITensor *box_ind, ITensor *output, uint32_t crop_box_ind, float extrapolation_value)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), crop_boxes->info(), box_ind->info(), output->info(), crop_box_ind, extrapolation_value));

    _input               = input;
    _crop_boxes          = crop_boxes;
    _box_ind             = box_ind;
    _output              = output;
    _crop_box_ind        = crop_box_ind;
    _extrapolation_value = extrapolation_value;

    const static std::map<std::pair<DataType, bool>, std::pair<NECropKernel::InBoundsCropFunction *, NECropKernel::InBoundsCropFunction *>> in_map_function =
    {
        { { DataType::F32, false }, { &in_bounds_crop_window<float, false, false>, &in_bounds_crop_window<float, false, true> } },
        { { DataType::F32, true }, { &in_bounds_crop_window<float, true, false>, &in_bounds_crop_window<float, true, true> } },
        { { DataType::U16, false }, { &in_bounds_crop_window<uint16_t, false, false>, &in_bounds_crop_window<uint16_t, false, true> } },
        { { DataType::U16, true }, { &in_bounds_crop_window<uint16_t, true, false>, &in_bounds_crop_window<uint16_t, true, true> } },
        { { DataType::S16, false }, { &in_bounds_crop_window<int16_t, false, false>, &in_bounds_crop_window<int16_t, false, true> } },
        { { DataType::S16, true }, { &in_bounds_crop_window<int16_t, true, false>, &in_bounds_crop_window<int16_t, true, true> } },
        { { DataType::U32, false }, { &in_bounds_crop_window<uint32_t, false, false>, &in_bounds_crop_window<uint32_t, false, true> } },
        { { DataType::U32, true }, { &in_bounds_crop_window<uint32_t, true, false>, &in_bounds_crop_window<uint32_t, true, true> } },
        { { DataType::S32, false }, { &in_bounds_crop_window<int32_t, false, false>, &in_bounds_crop_window<int32_t, false, true> } },
        { { DataType::S32, true }, { &in_bounds_crop_window<int32_t, true, false>, &in_bounds_crop_window<int32_t, true, true> } },
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        { { DataType::F16, false }, { &in_bounds_crop_window<float16_t, false, false>, &in_bounds_crop_window<float16_t, false, true> } },
        { { DataType::F16, false }, { &in_bounds_crop_window<float16_t, true, false>, &in_bounds_crop_window<float16_t, true, true> } }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    };

    auto in_it = in_map_function.find({ input->info()->data_type(), input->info()->dimension(0) == 1 });

    if(in_it != in_map_function.end())
    {
        _in_bounds_crop_functions = in_it->second;
    }
}

Status NECropKernel::validate(const ITensorInfo *input, const ITensorInfo *crop_boxes, const ITensorInfo *box_ind, const ITensorInfo *output, uint32_t crop_box_ind, float extrapolation_value)
{
    ARM_COMPUTE_UNUSED(extrapolation_value);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U16, DataType::S16, DataType::F16, DataType::U32, DataType::S32, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
    ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().num_dimensions() > 4);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[0] != 4);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] <= crop_box_ind);
    ARM_COMPUTE_RETURN_ERROR_ON(box_ind->tensor_shape()[0] <= crop_box_ind);
    if(output->total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() != 3);
        ARM_COMPUTE_RETURN_ERROR_ON(output->has_padding());
    }
    return Status{};
}

void NECropKernel::configure_output_shape()
{
    // _crop_box_ind is used to index _crop_boxes and retrieve the appropriate crop box.
    // The crop box is specified by normalized coordinates [y0, x0, y1, x1].
    const float x0 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(1, _crop_box_ind)));
    const float y0 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(0, _crop_box_ind)));
    const float x1 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(3, _crop_box_ind)));
    const float y1 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(2, _crop_box_ind)));
    // The normalized coordiantes are scaled to retrieve the floating point image coordinates which are rounded to integers.
    _start = Coordinates(std::floor(x0 * (_input->info()->tensor_shape()[1] - 1) + 0.5f),
                         std::floor(y0 * (_input->info()->tensor_shape()[2] - 1) + 0.5f));
    _end = Coordinates(std::floor(x1 * (_input->info()->tensor_shape()[1] - 1) + 0.5f),
                       std::floor(y1 * (_input->info()->tensor_shape()[2] - 1) + 0.5f));
    const TensorShape out_shape(_input->info()->tensor_shape()[0], abs(_end[0] - _start[0]) + 1, abs(_end[1] - _start[1]) + 1);
    _output->info()->set_tensor_shape(out_shape);

    _in_bounds_crop_function = _start[0] <= _end[0] ? _in_bounds_crop_functions.first : _in_bounds_crop_functions.second;

    bool is_width_flipped  = _end[0] < _start[0];
    bool is_height_flipped = _end[1] < _start[1];
    if(is_height_flipped)
    {
        _rows_out_of_bounds[0] = _start[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(static_cast<uint32_t>(_start[1] - _input->info()->dimension(2) + 1),
                                                                                                            static_cast<uint32_t>(_output->info()->dimension(2))) :
                                 0;
        _rows_out_of_bounds[1] = _end[1] < 0 ? std::min(static_cast<uint32_t>(-_end[1]),
                                                        static_cast<uint32_t>(_output->info()->dimension(2))) :
                                 0;
    }
    else
    {
        _rows_out_of_bounds[0] = _start[1] < 0 ? std::min(static_cast<uint32_t>(-_start[1]),
                                                          static_cast<uint32_t>(_output->info()->dimension(2))) :
                                 0;
        _rows_out_of_bounds[1] = _end[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(static_cast<uint32_t>(_end[1] - _input->info()->dimension(2) + 1),
                                                                                                          static_cast<uint32_t>(_output->info()->dimension(2))) :
                                 0;
    }
    if(is_width_flipped)
    {
        _cols_out_of_bounds[0] = _start[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(static_cast<uint32_t>(_start[0] - _input->info()->dimension(1) + 1),
                                                                                                            static_cast<uint32_t>(_output->info()->dimension(1))) :
                                 0;
        _cols_out_of_bounds[1] = _end[0] < 0 ? std::min(static_cast<uint32_t>(-_end[0]),
                                                        static_cast<uint32_t>(_output->info()->dimension(1))) :
                                 0;
    }
    else
    {
        _cols_out_of_bounds[0] = _start[0] < 0 ? std::min(static_cast<uint32_t>(-_start[0]),
                                                          static_cast<uint32_t>(_output->info()->dimension(1))) :
                                 0;
        _cols_out_of_bounds[1] = _end[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(static_cast<uint32_t>(_end[0] - _input->info()->dimension(1) + 1),
                                                                                                          static_cast<uint32_t>(_output->info()->dimension(1))) :
                                 0;
    }

    const static std::map<std::tuple<bool, bool, bool, bool>, NECropKernel::CropFunction *> map_function =
    {
        { std::make_tuple(false, false, false, false), &execute_window<false, false, false, false> },
        { std::make_tuple(false, false, false, true), &execute_window<false, false, false, true> },
        { std::make_tuple(false, false, true, false), &execute_window<false, false, true, false> },
        { std::make_tuple(false, false, true, true), &execute_window<false, false, true, true> },
        { std::make_tuple(false, true, false, false), &execute_window<false, true, false, false> },
        { std::make_tuple(false, true, false, true), &execute_window<false, true, false, true> },
        { std::make_tuple(false, true, true, false), &execute_window<false, true, true, false> },
        { std::make_tuple(false, true, true, true), &execute_window<false, true, true, true> },
        { std::make_tuple(true, false, false, false), &execute_window<true, false, false, false> },
        { std::make_tuple(true, false, false, true), &execute_window<true, false, false, true> },
        { std::make_tuple(true, false, true, false), &execute_window<true, false, true, false> },
        { std::make_tuple(true, false, true, true), &execute_window<true, false, true, true> },
        { std::make_tuple(true, true, false, false), &execute_window<true, true, false, false> },
        { std::make_tuple(true, true, false, true), &execute_window<true, true, false, true> },
        { std::make_tuple(true, true, true, false), &execute_window<true, true, true, false> },
        { std::make_tuple(true, true, true, true), &execute_window<true, true, true, true> },
    };

    auto it = map_function.find(std::make_tuple(is_height_flipped,
                                                _cols_out_of_bounds[0] + _cols_out_of_bounds[1] < _output->info()->dimension(1),
                                                _cols_out_of_bounds[0] > 0,
                                                _cols_out_of_bounds[1] > 0));

    if(it != map_function.end())
    {
        _crop_function = it->second;
    }

    INEKernel::configure(calculate_max_window(*_output->info()));
}

void NECropKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(window, info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    ARM_COMPUTE_ERROR_ON(_input->info()->has_padding());
    ARM_COMPUTE_ERROR_ON(_output->info()->has_padding());

    uint32_t    batch_index = *(reinterpret_cast<int32_t *>(_box_ind->ptr_to_element(Coordinates(_crop_box_ind))));
    Coordinates input_offset(0, _end[0] < _start[0] ? _start[0] - _cols_out_of_bounds[0] : _start[0] + _cols_out_of_bounds[0],
                             _end[1] < _start[1] ? _start[1] - _rows_out_of_bounds[0] : _start[1] + _rows_out_of_bounds[0], batch_index);
    (*_crop_function)(_input, _output, input_offset, _extrapolation_value, _rows_out_of_bounds, _cols_out_of_bounds, _in_bounds_crop_function);
}
} // namespace arm_compute