aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NECropKernel.cpp
blob: 60271fbc743c86b883a1ed8a7cefd4e609d5749c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 * Copyright (c) 2019-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/NEON/kernels/NECropKernel.h"

#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/helpers/tensor_transform.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/Window.h"

#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/utils/helpers/bit_ops.h"
#include "src/cpu/kernels/crop/list.h"

namespace arm_compute
{
namespace
{
struct CropSelectorData
{
    DataType dt;
};

using CropSelectorPtr = std::add_pointer<bool(const CropSelectorData &data)>::type;
using CropUKernelPtr  = std::add_pointer<void(
    const ITensor *, const ITensor *, float *, Coordinates, int32_t, int32_t, int32_t, bool, bool)>::type;

struct CropUKernel
{
    const char           *name;
    const CropSelectorPtr is_selected;
    CropUKernelPtr        ukernel;
};

static const CropUKernel available_kernels[] = {
    {"fp16_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::F16; },
     REGISTER_FP16_NEON(arm_compute::cpu::fp16_in_bounds_crop_window)},
    {"f32_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::F32; },
     REGISTER_FP32_NEON(arm_compute::cpu::fp32_in_bounds_crop_window)},
    {"u8_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::U8; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::u8_in_bounds_crop_window)},
    {"u16_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::U16; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::u16_in_bounds_crop_window)},
    {"u32_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::U32; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::u32_in_bounds_crop_window)},
    {"s8_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::S8; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::s8_in_bounds_crop_window)},
    {"s16_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::S16; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::s16_in_bounds_crop_window)},
    {"s32_neon_crop", [](const CropSelectorData &data) { return data.dt == DataType::S32; },
     REGISTER_INTEGER_NEON(arm_compute::cpu::s32_in_bounds_crop_window)},
};

/** Micro-kernel selector
 *
 * @param[in] data Selection data passed to help pick the appropriate micro-kernel
 *
 * @return A matching micro-kernel else nullptr
 */
const CropUKernel *get_implementation(const CropSelectorData &data)
{
    for (const auto &uk : available_kernels)
    {
        if (uk.is_selected(data))
        {
            return &uk;
        }
    }

    return nullptr;
}

inline void out_of_bounds_crop_window(const ITensor *output,
                                      float         *output_ptr,
                                      float          extrapolation_value,
                                      int32_t        window_step_x,
                                      int32_t        output_width_start,
                                      int32_t        output_width_limit)
{
    auto    in    = wrapper::vdup_n(extrapolation_value, wrapper::traits::vector_128_tag());
    int32_t x     = 0;
    int32_t limit = (output_width_limit - output_width_start) * static_cast<int32_t>(output->info()->dimension(0));
    float  *output_start_ptr = output_ptr + output_width_start * output->info()->dimension(0);
    for (; x <= limit - window_step_x; x += window_step_x)
    {
        wrapper::vstore(output_start_ptr + x, in);
    }
    for (; x < limit; ++x)
    {
        *(output_start_ptr + x) = extrapolation_value;
    }
}

inline void execute_window(const ITensor                      *input,
                           const ITensor                      *output,
                           Coordinates                         input_offset,
                           float                               extrapolation_value,
                           const std::array<uint32_t, 2>      &rows_out_of_bounds,
                           const std::array<uint32_t, 2>      &cols_out_of_bounds,
                           NECropKernel::InBoundsCropFunction *in_bounds_crop_function,
                           bool                                is_height_flipped,
                           bool                                has_cols_in_bounds,
                           bool                                has_cols_out_of_bounds_before,
                           bool                                has_cols_out_of_bounds_after,
                           bool                                input_has_single_channel,
                           bool                                is_width_flipped)
{
    // Output is always float.
    const int window_step_x = 16 / sizeof(float);
    auto     *output_ptr    = reinterpret_cast<float *>(output->buffer());
    //  Output window:
    //  --------------------------------
    //  |          Out of bounds       |
    //  |          rows before         |
    //  |------------------------------|
    //  | Out of | In         | Out of |
    //  | bounds | bounds     | bounds |
    //  | cols   | elements   | cols   |
    //  | before | copied     | after  |
    //  |        | from input |        |
    //  --------------------------------
    //  |        Out of bounds         |
    //  |        rows after            |
    //  |------------------------------|
    // Fill all output rows that have no elements that are within the input bounds with the extrapolation value.
    // First for the rows before the in bounds rows.
    out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0,
                              rows_out_of_bounds[0] * output->info()->dimension(1));
    output_ptr += rows_out_of_bounds[0] * output->info()->dimension(1) * output->info()->dimension(0);
    // Iterate through each row that has any elements within the input bounds.
    for (uint32_t row = rows_out_of_bounds[0];
         static_cast<int32_t>(row) < static_cast<int32_t>(output->info()->dimension(2) - rows_out_of_bounds[1]);
         ++row, is_height_flipped ? --input_offset[2] : ++input_offset[2])
    {
        // Fill all elements in the row that are out of bounds with the extrapolation value.
        // First for the elements before the in bounds elements.
        if (has_cols_out_of_bounds_before)
        {
            out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, cols_out_of_bounds[0]);
        }
        // Copy all elements within the input bounds from the input tensor.
        if (has_cols_in_bounds)
        {
            (*in_bounds_crop_function)(input, output, output_ptr, input_offset, window_step_x, cols_out_of_bounds[0],
                                       output->info()->dimension(1) - cols_out_of_bounds[1], input_has_single_channel,
                                       is_width_flipped);
        }
        // Fill all elements after the in bounds elements with the extrapolation value.
        if (has_cols_out_of_bounds_after)
        {
            out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x,
                                      output->info()->dimension(1) - cols_out_of_bounds[1],
                                      output->info()->dimension(1));
        }
        output_ptr += output->info()->dimension(1) * output->info()->dimension(0);
    }
    // Fill all rows after the in bounds elements with the extrapolation value.
    out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0,
                              rows_out_of_bounds[1] * output->info()->dimension(1));
}
} // namespace

NECropKernel::NECropKernel()
    : _input(nullptr),
      _crop_boxes(nullptr),
      _box_ind(nullptr),
      _output(nullptr),
      _start(),
      _end(),
      _crop_box_ind(0),
      _extrapolation_value(0),
      _rows_out_of_bounds(),
      _cols_out_of_bounds()
{
}

void NECropKernel::configure(const ITensor *input,
                             const ITensor *crop_boxes,
                             const ITensor *box_ind,
                             ITensor       *output,
                             uint32_t       crop_box_ind,
                             float          extrapolation_value)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), crop_boxes->info(), box_ind->info(), output->info(),
                                        crop_box_ind, extrapolation_value));

    _input               = input;
    _crop_boxes          = crop_boxes;
    _box_ind             = box_ind;
    _output              = output;
    _crop_box_ind        = crop_box_ind;
    _extrapolation_value = extrapolation_value;
}

Status NECropKernel::validate(const ITensorInfo *input,
                              const ITensorInfo *crop_boxes,
                              const ITensorInfo *box_ind,
                              const ITensorInfo *output,
                              uint32_t           crop_box_ind,
                              float              extrapolation_value)
{
    ARM_COMPUTE_UNUSED(extrapolation_value);
    const auto *uk = get_implementation(CropSelectorData{input->data_type()});
    ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);

    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::U16, DataType::S16,
                                                         DataType::F16, DataType::U32, DataType::S32, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
    ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().num_dimensions() > 4);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[0] != 4);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]);
    ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] <= crop_box_ind);
    ARM_COMPUTE_RETURN_ERROR_ON(box_ind->tensor_shape()[0] <= crop_box_ind);
    if (output->total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() != 3);
        ARM_COMPUTE_RETURN_ERROR_ON(output->has_padding());
    }
    return Status{};
}

void NECropKernel::configure_output_shape()
{
    // _crop_box_ind is used to index _crop_boxes and retrieve the appropriate crop box.
    // The crop box is specified by normalized coordinates [y0, x0, y1, x1].
    const float x0 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(1, _crop_box_ind)));
    const float y0 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(0, _crop_box_ind)));
    const float x1 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(3, _crop_box_ind)));
    const float y1 = *reinterpret_cast<const float *>(_crop_boxes->ptr_to_element(Coordinates(2, _crop_box_ind)));
    // The normalized coordiantes are scaled to retrieve the floating point image coordinates which are rounded to integers.
    _start = Coordinates(std::floor(x0 * (_input->info()->tensor_shape()[1] - 1) + 0.5f),
                         std::floor(y0 * (_input->info()->tensor_shape()[2] - 1) + 0.5f));
    _end   = Coordinates(std::floor(x1 * (_input->info()->tensor_shape()[1] - 1) + 0.5f),
                         std::floor(y1 * (_input->info()->tensor_shape()[2] - 1) + 0.5f));
    const TensorShape out_shape(_input->info()->tensor_shape()[0], abs(_end[0] - _start[0]) + 1,
                                abs(_end[1] - _start[1]) + 1);
    _output->info()->set_tensor_shape(out_shape);

    bool is_width_flipped  = _end[0] < _start[0];
    bool is_height_flipped = _end[1] < _start[1];
    if (is_height_flipped)
    {
        _rows_out_of_bounds[0] = _start[1] >= static_cast<int32_t>(_input->info()->dimension(2))
                                     ? std::min(static_cast<uint32_t>(_start[1] - _input->info()->dimension(2) + 1),
                                                static_cast<uint32_t>(_output->info()->dimension(2)))
                                     : 0;
        _rows_out_of_bounds[1] = _end[1] < 0 ? std::min(static_cast<uint32_t>(-_end[1]),
                                                        static_cast<uint32_t>(_output->info()->dimension(2)))
                                             : 0;
    }
    else
    {
        _rows_out_of_bounds[0] = _start[1] < 0 ? std::min(static_cast<uint32_t>(-_start[1]),
                                                          static_cast<uint32_t>(_output->info()->dimension(2)))
                                               : 0;
        _rows_out_of_bounds[1] = _end[1] >= static_cast<int32_t>(_input->info()->dimension(2))
                                     ? std::min(static_cast<uint32_t>(_end[1] - _input->info()->dimension(2) + 1),
                                                static_cast<uint32_t>(_output->info()->dimension(2)))
                                     : 0;
    }
    if (is_width_flipped)
    {
        _cols_out_of_bounds[0] = _start[0] >= static_cast<int32_t>(_input->info()->dimension(1))
                                     ? std::min(static_cast<uint32_t>(_start[0] - _input->info()->dimension(1) + 1),
                                                static_cast<uint32_t>(_output->info()->dimension(1)))
                                     : 0;
        _cols_out_of_bounds[1] = _end[0] < 0 ? std::min(static_cast<uint32_t>(-_end[0]),
                                                        static_cast<uint32_t>(_output->info()->dimension(1)))
                                             : 0;
    }
    else
    {
        _cols_out_of_bounds[0] = _start[0] < 0 ? std::min(static_cast<uint32_t>(-_start[0]),
                                                          static_cast<uint32_t>(_output->info()->dimension(1)))
                                               : 0;
        _cols_out_of_bounds[1] = _end[0] >= static_cast<int32_t>(_input->info()->dimension(1))
                                     ? std::min(static_cast<uint32_t>(_end[0] - _input->info()->dimension(1) + 1),
                                                static_cast<uint32_t>(_output->info()->dimension(1)))
                                     : 0;
    }

    INEKernel::configure(calculate_max_window(*_output->info()));
}

void NECropKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(window, info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    ARM_COMPUTE_ERROR_ON(_input->info()->has_padding());
    ARM_COMPUTE_ERROR_ON(_output->info()->has_padding());

    const auto *uk = get_implementation(CropSelectorData{_input->info()->data_type()});

    uint32_t    batch_index = *(reinterpret_cast<int32_t *>(_box_ind->ptr_to_element(Coordinates(_crop_box_ind))));
    Coordinates input_offset(
        0, _end[0] < _start[0] ? _start[0] - _cols_out_of_bounds[0] : _start[0] + _cols_out_of_bounds[0],
        _end[1] < _start[1] ? _start[1] - _rows_out_of_bounds[0] : _start[1] + _rows_out_of_bounds[0], batch_index);
    execute_window(_input, _output, input_offset, _extrapolation_value, _rows_out_of_bounds, _cols_out_of_bounds,
                   uk->ukernel,
                   _end[1]<_start[1],
                           _cols_out_of_bounds[0] +
                               _cols_out_of_bounds[1]<_output->info()->dimension(1), _cols_out_of_bounds[0]> 0,
                           _cols_out_of_bounds[1]> 0,
                   _start[0] <= _end[0], _end[0] < _start[0]);
}
} // namespace arm_compute