aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEChannelCombineKernel.cpp
blob: 0de6c4326ab71c91c9a53113729c2afd08b2bad5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 * Copyright (c) 2016-2019 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEChannelCombineKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/IMultiImage.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/MultiImageInfo.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <arm_neon.h>

using namespace arm_compute;

namespace arm_compute
{
class Coordinates;
} // namespace arm_compute

NEChannelCombineKernel::NEChannelCombineKernel()
    : _func(nullptr), _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }, _num_elems_processed_per_iteration(8),
_is_parallelizable(true)
{
}

void NEChannelCombineKernel::configure(const ITensor *plane0, const ITensor *plane1, const ITensor *plane2, const ITensor *plane3, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
    ARM_COMPUTE_ERROR_ON(plane0 == output);
    ARM_COMPUTE_ERROR_ON(plane1 == output);
    ARM_COMPUTE_ERROR_ON(plane2 == output);

    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::UYVY422, Format::YUYV422);

    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);

    const Format output_format = output->info()->format();

    // Check if horizontal dimension of Y plane is even and validate horizontal sub-sampling dimensions for U and V planes
    if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
    {
        // Validate Y plane of input and output
        ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output);

        // Validate U and V plane of the input
        ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);
    }

    _planes[0] = plane0;
    _planes[1] = plane1;
    _planes[2] = plane2;
    _planes[3] = nullptr;

    // Validate the last input tensor only for RGBA format
    if(Format::RGBA8888 == output_format)
    {
        ARM_COMPUTE_ERROR_ON_NULLPTR(plane3);
        ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane3);

        ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8);
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8);

        _planes[3] = plane3;
    }

    _output       = output;
    _output_multi = nullptr;

    // Half the processed elements for U and V channels due to horizontal sub-sampling of 2
    if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
    {
        _x_subsampling[1] = 2;
        _x_subsampling[2] = 2;
    }

    _num_elems_processed_per_iteration = 8;
    _is_parallelizable                 = true;

    // Select function and number of elements to process given the output format
    switch(output_format)
    {
        case Format::RGB888:
            _func = &NEChannelCombineKernel::combine_3C;
            break;
        case Format::RGBA8888:
            _func = &NEChannelCombineKernel::combine_4C;
            break;
        case Format::UYVY422:
            _num_elems_processed_per_iteration = 16;
            _func                              = &NEChannelCombineKernel::combine_YUV_1p<true>;
            break;
        case Format::YUYV422:
            _num_elems_processed_per_iteration = 16;
            _func                              = &NEChannelCombineKernel::combine_YUV_1p<false>;
            break;
        default:
            ARM_COMPUTE_ERROR("Not supported format.");
            break;
    }

    Window win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration));

    AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration);
    AccessWindowHorizontal plane0_access(plane0->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[0]);
    AccessWindowHorizontal plane1_access(plane1->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[1]);
    AccessWindowHorizontal plane2_access(plane2->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[2]);
    AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, _num_elems_processed_per_iteration);

    update_window_and_padding(
        win,
        plane0_access,
        plane1_access,
        plane2_access,
        plane3_access,
        output_access);

    ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(),
                                                       plane1->info()->valid_region(),
                                                       plane2->info()->valid_region());

    if(plane3 != nullptr)
    {
        valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region);
    }

    output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape()));

    INEKernel::configure(win);
}

void NEChannelCombineKernel::configure(const IImage *plane0, const IImage *plane1, const IImage *plane2, IMultiImage *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);

    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444);

    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);

    const Format output_format = output->info()->format();

    // Validate shape of Y plane to be even and shape of sub-sampling dimensions for U and V planes
    // Perform validation only for formats which require sub-sampling.
    if(Format::YUV444 != output_format)
    {
        // Validate Y plane of input and output
        ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output->plane(0));

        // Validate U and V plane of the input
        ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);

        // Validate second plane U (NV12 and NV21 have a UV88 combined plane while IYUV has only the U plane)
        // MultiImage generates the correct tensor shape but also check in case the tensor shape of planes was changed to a wrong size
        ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(1));

        // Validate the last plane V of format IYUV
        if(Format::IYUV == output_format)
        {
            // Validate Y plane of the output
            ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(2));
        }
    }

    _planes[0]    = plane0;
    _planes[1]    = plane1;
    _planes[2]    = plane2;
    _planes[3]    = nullptr;
    _output       = nullptr;
    _output_multi = output;

    bool         has_two_planes           = false;
    unsigned int num_elems_written_plane1 = 8;

    _num_elems_processed_per_iteration = 8;
    _is_parallelizable                 = true;

    switch(output_format)
    {
        case Format::NV12:
        case Format::NV21:
            _x_subsampling           = { { 1, 2, 2 } };
            _y_subsampling           = { { 1, 2, 2 } };
            _func                    = &NEChannelCombineKernel::combine_YUV_2p;
            has_two_planes           = true;
            num_elems_written_plane1 = 16;
            break;
        case Format::IYUV:
            _is_parallelizable = false;
            _x_subsampling     = { { 1, 2, 2 } };
            _y_subsampling     = { { 1, 2, 2 } };
            _func              = &NEChannelCombineKernel::combine_YUV_3p;
            break;
        case Format::YUV444:
            _is_parallelizable = false;
            _x_subsampling     = { { 1, 1, 1 } };
            _y_subsampling     = { { 1, 1, 1 } };
            _func              = &NEChannelCombineKernel::combine_YUV_3p;
            break;
        default:
            ARM_COMPUTE_ERROR("Not supported format.");
            break;
    }

    const unsigned int y_step = *std::max_element(_y_subsampling.begin(), _y_subsampling.end());

    Window                win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration, y_step));
    AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f, 1.f / _y_subsampling[0]);
    AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_written_plane1, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
    AccessWindowRectangle output_plane2_access(has_two_planes ? nullptr : output->plane(2)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);

    update_window_and_padding(win,
                              AccessWindowHorizontal(plane0->info(), 0, _num_elems_processed_per_iteration),
                              AccessWindowRectangle(plane1->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]),
                              AccessWindowRectangle(plane2->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]),
                              output_plane0_access,
                              output_plane1_access,
                              output_plane2_access);

    ValidRegion plane0_valid_region  = plane0->info()->valid_region();
    ValidRegion output_plane1_region = has_two_planes ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region();

    output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape()));
    output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape()));
    output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape()));

    INEKernel::configure(win);
}

bool NEChannelCombineKernel::is_parallelisable() const
{
    return _is_parallelizable;
}

void NEChannelCombineKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (this->*_func)(window);
}

void NEChannelCombineKernel::combine_3C(const Window &win)
{
    Iterator p0(_planes[0], win);
    Iterator p1(_planes[1], win);
    Iterator p2(_planes[2], win);
    Iterator out(_output, win);

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto p0_ptr  = static_cast<uint8_t *>(p0.ptr());
        const auto p1_ptr  = static_cast<uint8_t *>(p1.ptr());
        const auto p2_ptr  = static_cast<uint8_t *>(p2.ptr());
        const auto out_ptr = static_cast<uint8_t *>(out.ptr());

        const uint8x8x3_t pixels =
        {
            {
                vld1_u8(p0_ptr),
                vld1_u8(p1_ptr),
                vld1_u8(p2_ptr)
            }
        };

        vst3_u8(out_ptr, pixels);
    },
    p0, p1, p2, out);
}

void NEChannelCombineKernel::combine_4C(const Window &win)
{
    Iterator p0(_planes[0], win);
    Iterator p1(_planes[1], win);
    Iterator p2(_planes[2], win);
    Iterator p3(_planes[3], win);
    Iterator out(_output, win);

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto p0_ptr  = static_cast<uint8_t *>(p0.ptr());
        const auto p1_ptr  = static_cast<uint8_t *>(p1.ptr());
        const auto p2_ptr  = static_cast<uint8_t *>(p2.ptr());
        const auto p3_ptr  = static_cast<uint8_t *>(p3.ptr());
        const auto out_ptr = static_cast<uint8_t *>(out.ptr());

        const uint8x8x4_t pixels =
        {
            {
                vld1_u8(p0_ptr),
                vld1_u8(p1_ptr),
                vld1_u8(p2_ptr),
                vld1_u8(p3_ptr)
            }
        };

        vst4_u8(out_ptr, pixels);
    },
    p0, p1, p2, p3, out);
}

template <bool is_uyvy>
void NEChannelCombineKernel::combine_YUV_1p(const Window &win)
{
    // Create sub-sampled uv window and init uv planes
    Window win_uv(win);
    win_uv.set_dimension_step(Window::DimX, win.x().step() / _x_subsampling[1]);
    win_uv.validate();

    Iterator p0(_planes[0], win);
    Iterator p1(_planes[1], win_uv);
    Iterator p2(_planes[2], win_uv);
    Iterator out(_output, win);

    constexpr auto shift = is_uyvy ? 1 : 0;

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto p0_ptr  = static_cast<uint8_t *>(p0.ptr());
        const auto p1_ptr  = static_cast<uint8_t *>(p1.ptr());
        const auto p2_ptr  = static_cast<uint8_t *>(p2.ptr());
        const auto out_ptr = static_cast<uint8_t *>(out.ptr());

        const uint8x8x2_t pixels_y = vld2_u8(p0_ptr);
        const uint8x8x2_t pixels_uv =
        {
            {
                vld1_u8(p1_ptr),
                vld1_u8(p2_ptr)
            }
        };

        uint8x8x4_t pixels{ {} };
        pixels.val[0 + shift] = pixels_y.val[0];
        pixels.val[1 - shift] = pixels_uv.val[0];
        pixels.val[2 + shift] = pixels_y.val[1];
        pixels.val[3 - shift] = pixels_uv.val[1];

        vst4_u8(out_ptr, pixels);
    },
    p0, p1, p2, out);
}

void NEChannelCombineKernel::combine_YUV_2p(const Window &win)
{
    ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[1]);
    ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[1]);

    // Copy first plane
    copy_plane(win, 0);

    // Update UV window
    Window uv_win(win);
    uv_win.set(Window::DimX, Window::Dimension(uv_win.x().start() / _x_subsampling[1], uv_win.x().end() / _x_subsampling[1], uv_win.x().step() / _x_subsampling[1]));
    uv_win.set(Window::DimY, Window::Dimension(uv_win.y().start() / _y_subsampling[1], uv_win.y().end() / _y_subsampling[1], 1));
    uv_win.validate();

    // Update output win
    Window out_win(win);
    out_win.set(Window::DimX, Window::Dimension(out_win.x().start(), out_win.x().end(), out_win.x().step() / _x_subsampling[1]));
    out_win.set(Window::DimY, Window::Dimension(out_win.y().start() / _y_subsampling[1], out_win.y().end() / _y_subsampling[1], 1));
    out_win.validate();

    // Construct second plane
    const int shift = (Format::NV12 == _output_multi->info()->format()) ? 0 : 1;
    Iterator  p1(_planes[1 + shift], uv_win);
    Iterator  p2(_planes[2 - shift], uv_win);
    Iterator  out(_output_multi->plane(1), out_win);

    // Increase step size after iterator is created to calculate stride correctly for multi channel format
    out_win.set_dimension_step(Window::DimX, out_win.x().step() * _x_subsampling[1]);

    execute_window_loop(out_win, [&](const Coordinates &)
    {
        const uint8x8x2_t pixels =
        {
            {
                vld1_u8(p1.ptr()),
                vld1_u8(p2.ptr())
            }
        };

        vst2_u8(out.ptr(), pixels);
    },
    p1, p2, out);
}

void NEChannelCombineKernel::combine_YUV_3p(const Window &win)
{
    copy_plane(win, 0);
    copy_plane(win, 1);
    copy_plane(win, 2);
}

void NEChannelCombineKernel::copy_plane(const Window &win, uint32_t plane_id)
{
    ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[plane_id]);
    ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[plane_id]);

    // Update window
    Window tmp_win(win);
    tmp_win.set(Window::DimX, Window::Dimension(tmp_win.x().start() / _x_subsampling[plane_id], tmp_win.x().end() / _x_subsampling[plane_id], tmp_win.x().step() / _x_subsampling[plane_id]));
    tmp_win.set(Window::DimY, Window::Dimension(tmp_win.y().start() / _y_subsampling[plane_id], tmp_win.y().end() / _y_subsampling[plane_id], 1));

    Iterator in(_planes[plane_id], tmp_win);
    Iterator out(_output_multi->plane(plane_id), tmp_win);

    execute_window_loop(tmp_win, [&](const Coordinates &)
    {
        const uint8x8_t pixels = vld1_u8(in.ptr());

        vst1_u8(out.ptr(), pixels);
    },
    in, out);
}