aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEBatchToSpaceLayerKernel.cpp
blob: f299bb94a418a3d219f8299f9b5d6c0943237cc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*
 * Copyright (c) 2019-2020, 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/NEON/kernels/NEBatchToSpaceLayerKernel.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/Validate.h"

#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"

using namespace arm_compute::misc::shape_calculator;

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *block_info, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_info, output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(block_info, 1, DataType::S32);
    ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);

    // Validate output if initialized
    if (output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}
Status validate_arguments_static(const ITensorInfo *input,
                                 int                block_shape_x,
                                 int                block_shape_y,
                                 const ITensorInfo *output,
                                 const CropInfo    &crop_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
    ARM_COMPUTE_RETURN_ERROR_ON(block_shape_x <= 0);
    ARM_COMPUTE_RETURN_ERROR_ON(block_shape_y <= 0);

    const DataLayout data_layout = input->data_layout();
    const int        idx_batch   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
    ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_batch] % (block_shape_x * block_shape_y) != 0);
    // Validate output if initialized
    if (output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);

        const TensorShape expected_output_shape = compute_batch_to_space_shape(
            input->data_layout(), input->tensor_shape(), block_shape_x, block_shape_y, crop_info);
        const TensorInfo expected_output = output->clone()->set_tensor_shape(expected_output_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &expected_output);
    }

    return Status{};
}
} // namespace

NEBatchToSpaceLayerKernel::NEBatchToSpaceLayerKernel()
    : _input(nullptr),
      _block_shape(nullptr),
      _output(nullptr),
      _data_layout(DataLayout::UNKNOWN),
      _block_shape_x(),
      _block_shape_y(),
      _crop_info()
{
}

void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const ITensor *block_shape, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), block_shape->info(), output->info()));

    _input       = input;
    _block_shape = block_shape;
    _output      = output;
    _data_layout = input->info()->data_layout();

    // Configure kernel window
    Window win = calculate_max_window(*output->info(), Steps());
    ICPPKernel::configure(win);
}

void NEBatchToSpaceLayerKernel::configure(
    const ITensor *input, int32_t block_shape_x, int32_t block_shape_y, ITensor *output, const CropInfo &crop_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    const TensorShape output_shape = compute_batch_to_space_shape(
        input->info()->data_layout(), input->info()->tensor_shape(), block_shape_x, block_shape_y);
    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(
        validate_arguments_static(input->info(), block_shape_x, block_shape_y, output->info(), crop_info));

    _input         = input;
    _output        = output;
    _block_shape_x = block_shape_x;
    _block_shape_y = block_shape_y;
    _data_layout   = input->info()->data_layout();
    _crop_info     = crop_info;

    // Configure kernel window
    Window win = calculate_max_window(*output->info(), Steps());
    ICPPKernel::configure(win);
}

Status
NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_shape, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, block_shape, output));
    return Status{};
}

Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input,
                                           int32_t            block_shape_x,
                                           int32_t            block_shape_y,
                                           const ITensorInfo *output,
                                           const CropInfo    &crop_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_static(input, block_shape_x, block_shape_y, output, crop_info));
    return Status{};
}

void NEBatchToSpaceLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);

    if (_block_shape != nullptr)
    {
        // Retrieve the block shapes dynamically
        _block_shape_x = *(reinterpret_cast<const int *>(_block_shape->ptr_to_element(0)));
        _block_shape_y = *(reinterpret_cast<const int *>(_block_shape->ptr_to_element(1)));
    }

    const int batch_size   = _output->info()->dimension(3);
    const int element_size = _output->info()->element_size();

    Window slice_out = window.first_slice_window_3D();

    int batch_id = 0;
    // Main loop for NCHW and NHWC
    if (_data_layout == DataLayout::NCHW)
    {
        do
        {
            Iterator out(_output, slice_out);
            execute_window_loop(
                slice_out,
                [&](const Coordinates &id)
                {
                    const int x = id.x();
                    const int y = id.y();
                    const int z = id.z();
                    // Translate x, y to uncropped version
                    const int x_c = x + _crop_info.left;
                    const int y_c = y + _crop_info.top;

                    const int in_batch =
                        batch_id + ((x_c % _block_shape_x) + (y_c % _block_shape_y) * _block_shape_x) * batch_size;
                    const int   in_x = x_c / _block_shape_x;
                    const int   in_y = y_c / _block_shape_y;
                    Coordinates input_coords{in_x, in_y, z, in_batch};
                    memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size);
                },
                out);
            ++batch_id;
        } while (window.slide_window_slice_3D(slice_out));
    }
    else
    {
        // For NHWC we can perform a block copy on the Channel (first) dimension. Thus we do not need to iterate over this dimension
        slice_out.set(0U, Window::Dimension(0U, 1U, 1U));
        do
        {
            Iterator out(_output, slice_out);
            execute_window_loop(
                slice_out,
                [&](const Coordinates &id)
                {
                    const int x = id.y();
                    const int y = id.z();

                    // Translate x, y to uncropped version
                    const int x_c = x + _crop_info.left;
                    const int y_c = y + _crop_info.top;

                    const int in_batch =
                        batch_id + ((x_c % _block_shape_x) + (y_c % _block_shape_y) * _block_shape_x) * batch_size;
                    const int   in_x = x_c / _block_shape_x;
                    const int   in_y = y_c / _block_shape_y;
                    Coordinates input_coords{0, in_x, in_y, in_batch};
                    memcpy(out.ptr(), _input->ptr_to_element(input_coords),
                           element_size * _input->info()->dimension(0));
                },
                out);
            ++batch_id;
        } while (window.slide_window_slice_3D(slice_out));
    }
}
} // namespace arm_compute