aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp
blob: 2a85e0d77d50ec3e4fb498da0875692834c834af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
#include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
#include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/StringSupport.h"

#include <set>
#include <string>

using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;

namespace
{
using ElementsProcessed = Steps;

inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_UNUSED(reshape_info);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");

    if(!is_interleaved_transposed)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));

        if(output->total_size() != 0)
        {
            ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
            ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
        }
    }
    else
    {
        const int m                         = reshape_info.m();
        const int n                         = reshape_info.n();
        const int k                         = reshape_info.k();
        const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
        const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();

        TensorShape tensor_shape0{ input0->tensor_shape() };
        tensor_shape0.set(0, k);
        tensor_shape0.set(1, m);

        TensorShape tensor_shape1{ input1->tensor_shape() };
        tensor_shape1.set(0, n);
        tensor_shape1.set(1, k);

        const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
        const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);

        const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
        const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);

        if(output->total_size() != 0)
        {
            ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
            ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
        }
    }

    return Status{};
}

inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output,
                                                               bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info,
                                                               GPUTarget gpu_target, ElementsProcessed &num_elements_processed)
{
    ARM_COMPUTE_UNUSED(gpu_target);

    // Output tensor auto inizialitation if not yet initialized
    TensorShape tensor_shape{ input0->tensor_shape() };
    tensor_shape.set(0, is_interleaved_transposed ? reshape_info.n() : input1->dimension(0));
    tensor_shape.set(1, is_interleaved_transposed ? reshape_info.m() : input0->dimension(1));

    auto_init_if_empty(*output, input0->clone()->set_tensor_shape(tensor_shape));

    bool   window_changed = false;
    Window win{};

    const DataType data_type                           = input0->data_type();
    unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
    unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];

    if(is_interleaved_transposed)
    {
        // Configure window kernel
        num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type);
        num_elems_processed_per_iteration_y = 4;

        win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

        AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
        AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
        AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);

        update_window_and_padding(win, input0_access, input1_access, output_access);

        output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
    }
    else // The input tensors have not been reshaped
    {
        // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor.
        num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);

        switch(data_type)
        {
            case DataType::F16:
                num_elems_processed_per_iteration_x = 4;
                break;

            case DataType::F32:
                num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type);
                break;

            default:
                ARM_COMPUTE_ERROR("Current data type is not supported");
                break;
        }

        win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

        AccessWindowStatic    input0_access(input0, 0, 0, ceil_to_multiple(input0->dimension(0), 8), ceil_to_multiple(input0->dimension(1), num_elems_processed_per_iteration_y));
        AccessWindowStatic    input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
        AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);

        update_window_and_padding(win, input0_access, input1_access, output_access);

        Coordinates coord;
        coord.set_num_dimensions(output->num_dimensions());
        output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape()));
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

GCGEMMMatrixMultiplyKernel::GCGEMMMatrixMultiplyKernel()
    : _input0(nullptr), _input1(nullptr), _output(nullptr)
{
}

void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTensor *input1, IGCTensor *output, float alpha, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);

    // Perform validate step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info));

    _input0 = input0;
    _input1 = input1;
    _output = output;

    // Get target architecture
    GPUTarget gpu_target = get_target();

    ElementsProcessed num_elements_processed{};

    // Configure kernel window
    auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info, gpu_target, num_elements_processed);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    IGCKernel::configure(win_config.second);

    // Create build options
    std::set<std::string> build_opts;
    std::string           kernel_name;

    build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
    build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
    build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
    build_opts.emplace("#define COLS_A " + support::cpp11::to_string(input0->info()->dimension(0)));
    build_opts.emplace("#define COLS_B " + support::cpp11::to_string(input1->info()->dimension(0)));
    build_opts.emplace("#define ALPHA " + float_to_string_with_full_precision(alpha));

    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
    if(is_interleaved_transposed)
    {
        const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
        const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();

        build_opts.emplace("#define MULT_TRANSPOSE1XW_WIDTH " + support::cpp11::to_string(mult_transpose1xW_width));
        build_opts.emplace("#define MULT_INTERLEAVE4X4_HEIGHT " + support::cpp11::to_string(mult_interleave4x4_height));

        switch(input0->info()->data_type())
        {
            case DataType::F16:
                build_opts.emplace("#define DATA_TYPE_FP16");
                break;

            case DataType::F32:
                build_opts.emplace("#define DATA_TYPE_FP32");
                break;

            default:
                ARM_COMPUTE_ERROR("Current data type is not supported");
                break;
        }

        build_opts.emplace("#define GEMM_MM_INTERLEAVED_TRANSPOSED");

        kernel_name = "gemm_mm_interleaved_transposed";
    }
    else
    {
        // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor

        GPUTarget arch_target = get_arch_from_target(gpu_target);
        switch(input0->info()->data_type())
        {
            case DataType::F16:
                build_opts.emplace("#define DATA_TYPE_FP16");
                build_opts.emplace("#define MM_PROCESS_4X_OPTIMIZED");
                build_opts.emplace("#define GEMM_MM_FLOATING_POINT");
                break;

            case DataType::F32:
                build_opts.emplace("#define DATA_TYPE_FP32");

                if(arch_target == GPUTarget::BIFROST && input0->info()->num_dimensions() != 1)
                {
                    build_opts.emplace("#define GEMM_MM_FLOATING_POINT_BIFROST");
                }
                else
                {
                    build_opts.emplace("#define GEMM_MM_FLOATING_POINT");
                }
                break;

            default:
                ARM_COMPUTE_ERROR("Current data type is not supported");
                break;
        }

        build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_X " + support::cpp11::to_string(num_elements_processed.x()));
        build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_Y " + support::cpp11::to_string(num_elements_processed.y()));

        kernel_name = "gemm_mm_floating_point";
    }

    // Create kernel
    _kernel = GCKernelLibrary::get().create_kernel(kernel_name, build_opts);
}

Status GCGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved_transposed,
                                            const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target)
{
    ARM_COMPUTE_UNUSED(alpha);
    ElementsProcessed num_elements_processed{};
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed, reshape_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
                                                              input1->clone().get(),
                                                              output->clone().get(),
                                                              is_interleaved_transposed,
                                                              reshape_info,
                                                              gpu_target,
                                                              num_elements_processed)
                                .first);
    return Status{};
}

void GCGEMMMatrixMultiplyKernel::run(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IGCKernel::window(), window);

    _kernel.use();

    Window slice          = window.first_slice_window_2D();
    Window slice_matrix_b = slice;

    slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
    slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));

    do
    {
        Window slice_b = slice;
        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
        if(_input1->info()->num_dimensions() < 3)
        {
            slice_b = slice_matrix_b;
        }

        unsigned int idx = 0;

        add_2D_tensor_argument(idx, _input0, 1, slice);
        add_2D_tensor_argument(idx, _input1, 2, slice_b);
        add_2D_tensor_argument(idx, _output, 3, slice);
        _kernel.update_shader_params();
        enqueue(*this, slice);
    }
    while(window.slide_window_slice_2D(slice));
}