aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders/batchnormalization_layer.cs
blob: 7629b255b73a482ab886d7ab4f720cbe5af20ee2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;

#include "helpers_cs.h"

#if defined(DATA_TYPE_FP16)
precision mediump float;
#endif /*DATA_TYPE_FP32*/

#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) inversesqrt((a))
#define SQCVT_SAT(a) (a)

#if defined(LU_BRELU)
#define ACTIVATION_FUNC(x) min(max(x, float(B_VAL)), float(A_VAL))
#elif defined(BRELU)
#define ACTIVATION_FUNC(x) min(max(x, float(0)), float(A_VAL))
#elif defined(RELU)
#define ACTIVATION_FUNC(x) max(x, float(0))
#else /* defined(FUSED_ACT) */
#define ACTIVATION_FUNC(x) (x)
#endif /* defined(FUSED_ACT) */

/** Apply batch normalization.
 *
 * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
 * @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1"
 *
 * @param[in]  src_ptr     Pointer to the first source tensor. Supported data types: F16/F32
 * @param[in]  src_attrs   The attributes of the source tensor
 * @param[out] dst_ptr     Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_attrs   The attributes of the destination tensor
 * @param[in]  mean_ptr    Pointer to the mean source tensor. Supported data types: same as @p src_ptr
 * @param[in]  mean_attrs  The attributes of the mean tensor
 * @param[in]  var_ptr     Pointer to the var tensor. Supported data types: same as @p src_ptr
 * @param[in]  var_attrs   The attributes of the var tensor
 * @param[in]  beta_ptr    Pointer to the beta source tensor. Supported data types: same as @p src_ptr
 * @param[in]  beta_attrs  The attributes of the beta tensor
 * @param[in]  gamma_ptr   Pointer to the gamma source tensor. Supported data types: same as @p src_ptr
 * @param[in]  gamma_attrs The attributes of the gamma tensor
 */
SHADER_PARAMS_DECLARATION
{
    Tensor3DAttributes src_attrs;
    Tensor3DAttributes dst_attrs;
    VectorAttributes   mean_attrs;
    VectorAttributes   var_attrs;
    VectorAttributes   beta_attrs;
    VectorAttributes   gamma_attrs;
};

#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
TENSOR_DECLARATION(3, meanBuffer, float, mean_ptr, mean_shift, 2, readonly);
TENSOR_DECLARATION(4, varBuffer, float, var_ptr, var_shift, 2, readonly);
TENSOR_DECLARATION(5, betaBuffer, float, beta_ptr, beta_shift, 2, readonly);
TENSOR_DECLARATION(6, gammaBuffer, float, gamma_ptr, gamma_shift, 2, readonly);

void main(void)
{
    Tensor3DIterator src_iter   = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
    Tensor3DIterator dst_iter   = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
    VectorIterator   mean_iter  = CONVERT_TO_VECTOR_ITERATOR(mean_attrs, mean_shift);
    VectorIterator   var_iter   = CONVERT_TO_VECTOR_ITERATOR(var_attrs, var_shift);
    VectorIterator   beta_iter  = CONVERT_TO_VECTOR_ITERATOR(beta_attrs, beta_shift);
    VectorIterator   gamma_iter = CONVERT_TO_VECTOR_ITERATOR(gamma_attrs, gamma_shift);

    float input_value = 0.f;
    float denominator = 0.f;
    float numerator   = 0.f;
    float x_bar       = 0.f;
    float gamma_param = 0.f;
    float beta_param  = 0.f;

    uint current_slice = gl_GlobalInvocationID.z;

    input_value = LOAD_CURRENT_ITEM(src_ptr, src_iter);
    denominator = LOAD(var_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(var_iter, current_slice * var_attrs.stride_x));
    denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));

    // Calculate x bar and store results
    numerator = LOAD(mean_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(mean_iter, current_slice * mean_attrs.stride_x));
    numerator = SUB_OP(input_value, numerator);
    x_bar     = MUL_OP(numerator, denominator);

    gamma_param = LOAD(gamma_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(gamma_iter, current_slice * beta_attrs.stride_x));
    beta_param  = LOAD(beta_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(beta_iter, current_slice * beta_attrs.stride_x));

    STORE_CURRENT_ITEM(dst_ptr, dst_iter, ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param)));
}

#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
TENSOR_DECLARATION(3, meanBuffer, uvec2, mean_ptr, mean_shift, 3, readonly);
TENSOR_DECLARATION(4, varBuffer, uvec2, var_ptr, var_shift, 3, readonly);
TENSOR_DECLARATION(5, betaBuffer, uvec2, beta_ptr, beta_shift, 3, readonly);
TENSOR_DECLARATION(6, gammaBuffer, uvec2, gamma_ptr, gamma_shift, 3, readonly);

void main(void)
{
    Tensor3DIterator src_iter   = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
    Tensor3DIterator dst_iter   = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
    VectorIterator   mean_iter  = CONVERT_TO_VECTOR_ITERATOR(mean_attrs, mean_shift);
    VectorIterator   var_iter   = CONVERT_TO_VECTOR_ITERATOR(var_attrs, var_shift);
    VectorIterator   beta_iter  = CONVERT_TO_VECTOR_ITERATOR(beta_attrs, beta_shift);
    VectorIterator   gamma_iter = CONVERT_TO_VECTOR_ITERATOR(gamma_attrs, gamma_shift);

    vec4  unpacked_s[5];
    float denominator;
    float numerator;
    float gamma_param;
    float beta_param;
    vec4  x_bar;
    vec4  result;

    uint current_slice = gl_GlobalInvocationID.z;
    unpacked_s[0]      = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter);
    unpacked_s[1]      = LOAD_UNPACK4_HALF(var_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(var_iter, current_slice * var_attrs.stride_x));
    unpacked_s[2]      = LOAD_UNPACK4_HALF(mean_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(mean_iter, current_slice * mean_attrs.stride_x));
    unpacked_s[3]      = LOAD_UNPACK4_HALF(gamma_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(gamma_iter, current_slice * beta_attrs.stride_x));
    unpacked_s[4]      = LOAD_UNPACK4_HALF(beta_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(beta_iter, current_slice * beta_attrs.stride_x));

    if((current_slice % uint(4)) == uint(0))
    {
        denominator = unpacked_s[1].x;
        denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));

        //Calculate x bar and store results
        numerator = unpacked_s[2].x;
        x_bar     = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);

        gamma_param = unpacked_s[3].x;
        beta_param  = unpacked_s[4].x;
        result      = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));

        STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
    }
    else if((current_slice % uint(4)) == uint(1))
    {
        denominator = unpacked_s[1].y;
        denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));

        //Calculate x bar and store results
        numerator = unpacked_s[2].y;
        x_bar     = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);

        gamma_param = unpacked_s[3].y;
        beta_param  = unpacked_s[4].y;
        result      = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));

        STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
    }
    else if((current_slice % uint(4)) == uint(2))
    {
        denominator = unpacked_s[1].z;
        denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));

        //Calculate x bar and store results
        numerator = unpacked_s[2].z;
        x_bar     = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);

        gamma_param = unpacked_s[3].z;
        beta_param  = unpacked_s[4].z;
        result      = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));

        STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
    }
    else
    {
        denominator = unpacked_s[1].w;
        denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));

        //Calculate x bar and store results
        numerator = unpacked_s[2].w;
        x_bar     = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);

        gamma_param = unpacked_s[3].w;
        beta_param  = unpacked_s[4].w;
        result      = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));

        STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
    }
}
#endif /*DATA_TYPE_FP16*/