aboutsummaryrefslogtreecommitdiff
path: root/src/core/CPP/kernels/CPPNonMaximumSuppressionKernel.cpp
blob: 7ea59ba65b1534ffe8276c905a3e73b01789b268 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * Copyright (c) 2019-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/CPP/kernels/CPPNonMaximumSuppressionKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Validate.h"

#include <algorithm>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices, unsigned int max_output_size,
                          const float score_threshold, const float iou_threshold)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(bboxes, scores, output_indices);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bboxes, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_indices, 1, DataType::S32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(bboxes->num_dimensions() > 2, "The bboxes tensor must be a 2-D float tensor of shape [4, num_boxes].");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "The scores tensor must be a 1-D float tensor of shape [num_boxes].");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->num_dimensions() > 1, "The indices must be 1-D integer tensor of shape [M], where max_output_size <= M");
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bboxes, scores);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->dimension(0) == 0, "Indices tensor must be bigger than 0");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(max_output_size == 0, "Max size cannot be 0");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(iou_threshold < 0.f || iou_threshold > 1.f, "IOU threshold must be in [0,1]");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(score_threshold < 0.f || score_threshold > 1.f, "Score threshold must be in [0,1]");

    return Status{};
}
} // namespace

CPPNonMaximumSuppressionKernel::CPPNonMaximumSuppressionKernel()
    : _input_bboxes(nullptr), _input_scores(nullptr), _output_indices(nullptr), _max_output_size(0), _score_threshold(0.f), _iou_threshold(0.f), _num_boxes(0)
{
}

void CPPNonMaximumSuppressionKernel::configure(const ITensor *input_bboxes, const ITensor *input_scores, ITensor *output_indices,
                                               unsigned int max_output_size, const float score_threshold, const float iou_threshold)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input_bboxes, input_scores, output_indices);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_bboxes->info(), input_scores->info(), output_indices->info(), max_output_size, score_threshold, iou_threshold));

    auto_init_if_empty(*output_indices->info(), TensorShape(max_output_size), 1, DataType::U8, QuantizationInfo());

    _input_bboxes    = input_bboxes;
    _input_scores    = input_scores;
    _output_indices  = output_indices;
    _score_threshold = score_threshold;
    _iou_threshold   = iou_threshold;
    _max_output_size = max_output_size;
    _num_boxes       = input_scores->info()->dimension(0);

    // Configure kernel window
    Window win = calculate_max_window(*output_indices->info(), Steps());

    // The CPPNonMaximumSuppressionKernel doesn't need padding so update_window_and_padding() can be skipped
    ICPPKernel::configure(win);
}

Status CPPNonMaximumSuppressionKernel::validate(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices,
                                                unsigned int max_output_size, const float score_threshold, const float iou_threshold)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(bboxes, scores, output_indices, max_output_size, score_threshold, iou_threshold));
    return Status{};
}

void CPPNonMaximumSuppressionKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_UNUSED(window);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);

    // Auxiliary tensors
    std::vector<int>   indices_above_thd;
    std::vector<float> scores_above_thd;
    for(unsigned int i = 0; i < _num_boxes; ++i)
    {
        const float score_i = *(reinterpret_cast<float *>(_input_scores->ptr_to_element(Coordinates(i))));
        if(score_i >= _score_threshold)
        {
            scores_above_thd.emplace_back(score_i);
            indices_above_thd.emplace_back(i);
        }
    }

    // Sort selected indices based on scores
    const unsigned int        num_above_thd = indices_above_thd.size();
    std::vector<unsigned int> sorted_indices;
    sorted_indices.resize(num_above_thd);
    std::iota(sorted_indices.data(), sorted_indices.data() + num_above_thd, 0);
    std::sort(std::begin(sorted_indices),
              std::end(sorted_indices),
              [&](unsigned int first, unsigned int second)
    {
        return scores_above_thd[first] > scores_above_thd[second];
    });

    // Number of output is the minimum between max_detection and the scores above the threshold
    const unsigned int num_output = std::min(_max_output_size, num_above_thd);
    unsigned int       output_idx = 0;
    std::vector<bool>  visited(num_above_thd, false);

    // Keep only boxes with small IoU
    for(unsigned int i = 0; i < num_above_thd; ++i)
    {
        // Check if the output is full
        if(output_idx >= num_output)
        {
            break;
        }

        // Check if it was already visited, if not add it to the output and update the indices counter
        if(!visited[sorted_indices[i]])
        {
            *(reinterpret_cast<int *>(_output_indices->ptr_to_element(Coordinates(output_idx)))) = indices_above_thd[sorted_indices[i]];
            visited[sorted_indices[i]]                                                           = true;
            ++output_idx;
        }
        else
        {
            continue;
        }

        // Once added one element at the output check if the next ones overlap and can be skipped
        for(unsigned int j = i + 1; j < num_above_thd; ++j)
        {
            if(!visited[sorted_indices[j]])
            {
                // Calculate IoU
                const unsigned int i_index = indices_above_thd[sorted_indices[i]];
                const unsigned int j_index = indices_above_thd[sorted_indices[j]];
                // Box-corner format: xmin, ymin, xmax, ymax
                const auto box_i_xmin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(0, i_index))));
                const auto box_i_ymin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(1, i_index))));
                const auto box_i_xmax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(2, i_index))));
                const auto box_i_ymax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(3, i_index))));

                const auto box_j_xmin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(0, j_index))));
                const auto box_j_ymin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(1, j_index))));
                const auto box_j_xmax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(2, j_index))));
                const auto box_j_ymax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(3, j_index))));

                const float area_i = (box_i_xmax - box_i_xmin) * (box_i_ymax - box_i_ymin);
                const float area_j = (box_j_xmax - box_j_xmin) * (box_j_ymax - box_j_ymin);
                float       overlap;
                if(area_i <= 0 || area_j <= 0)
                {
                    overlap = 0.0f;
                }
                else
                {
                    const auto y_min_intersection = std::max<float>(box_i_ymin, box_j_ymin);
                    const auto x_min_intersection = std::max<float>(box_i_xmin, box_j_xmin);
                    const auto y_max_intersection = std::min<float>(box_i_ymax, box_j_ymax);
                    const auto x_max_intersection = std::min<float>(box_i_xmax, box_j_xmax);
                    const auto area_intersection  = std::max<float>(y_max_intersection - y_min_intersection, 0.0f) * std::max<float>(x_max_intersection - x_min_intersection, 0.0f);
                    overlap                       = area_intersection / (area_i + area_j - area_intersection);
                }

                if(overlap > _iou_threshold)
                {
                    visited[sorted_indices[j]] = true;
                }
            }
        }
    }
    // The output could be full but not the output indices tensor
    // Instead return values not valid we put -1
    for(; output_idx < _max_output_size; ++output_idx)
    {
        *(reinterpret_cast<int *>(_output_indices->ptr_to_element(Coordinates(output_idx)))) = -1;
    }
}
} // namespace arm_compute