aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
blob: 287a965f5b1d3ecffa52b27d35060c5c55de295b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * Copyright (c) 2018-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"

#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/CL/ICLKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/StringSupport.h"

namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;

namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
                          const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D dilation,
                          const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
    ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((act_info.enabled()) && (input->data_type() == DataType::QASYMM8 || input->data_type() == DataType::QASYMM8_SIGNED)
                                    && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
                                    && (act_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
                                    && (act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
                                    && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC),
                                    "For QASYMM8 only logistic, relu, lower bounded relu and lower-upper bounded relu are supported");
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != 3 || weights->dimension(1) != 3);
    ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);

    ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));

    const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());

    if(biases != nullptr)
    {
        if(is_qasymm)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
        }
        ARM_COMPUTE_RETURN_ERROR_ON((biases->dimension(0) != weights->dimension(2)) && (weights->dimension(2) != 1 || biases->dimension(0) != weights->dimension(3)));
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    if(is_qasymm)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts);
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
        ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
        ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);

        if(is_data_type_quantized_per_channel(weights->data_type()))
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
            ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != output_multipliers->dimension(0));
            ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != output_shifts->dimension(0));
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
            ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0));
            ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0));
        }
    }
    else
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    }

    if(output->total_size() != 0)
    {
        const ConvolutionInfo info{ conv_info, depth_multiplier, ActivationLayerInfo(), dilation };
        const TensorShape     output_shape = compute_depthwise_convolution_shape(*input, *weights, info);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info,
                                                        unsigned int depth_multiplier, GPUTarget gpu_target, std::string &kernel_name, const Size2D dilation)
{
    // Output auto inizialitation if not yet initialized
    const ConvolutionInfo info
    {
        conv_info, depth_multiplier, ActivationLayerInfo(), dilation
    };
    const TensorShape     output_shape = compute_depthwise_convolution_shape(*input, *weights, info);
    auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));

    const unsigned int conv_stride_x = conv_info.stride().first;
    const unsigned int conv_stride_y = conv_info.stride().second;
    const bool         is_qasymm     = is_data_type_quantized_asymmetric(input->data_type());
    const bool         is_bifrost    = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;

    // Configure kernel window
    unsigned int num_elems_read_per_iteration_x    = 0;
    unsigned int num_elems_read_per_iteration_y    = 0;
    unsigned int num_elems_written_per_iteration_x = 0;
    unsigned int num_elems_written_per_iteration_y = 0;

    if(input->data_type() == DataType::F16)
    {
        kernel_name                       = "depthwise_convolution_3x3_f16";
        num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
        num_elems_written_per_iteration_y = 1;
        num_elems_read_per_iteration_y    = 3;
        switch(conv_stride_x)
        {
            case 1:
                num_elems_read_per_iteration_x = 8;
                break;
            case 2:
                num_elems_read_per_iteration_x = 9;
                break;
            case 3:
                num_elems_read_per_iteration_x = 16;
                break;
            default:
                num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
                break;
        }
        if(is_bifrost)
        {
            if(conv_stride_x == 1 && conv_stride_y == 1)
            {
                kernel_name                       = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16";
                num_elems_read_per_iteration_x    = 8;
                num_elems_written_per_iteration_x = 4;
                num_elems_read_per_iteration_y    = 6;
                num_elems_written_per_iteration_y = 4;
            }
            else if(conv_stride_x == 2 && conv_stride_y == 2)
            {
                kernel_name                       = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16";
                num_elems_read_per_iteration_x    = 10;
                num_elems_written_per_iteration_x = 4;
                num_elems_read_per_iteration_y    = 5;
                num_elems_written_per_iteration_y = 2;
            }
        }
    }
    else if(input->data_type() == DataType::F32 && is_bifrost)
    {
        if(conv_stride_x == 1 && conv_stride_y == 1)
        {
            kernel_name                       = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32";
            num_elems_read_per_iteration_x    = 4;
            num_elems_read_per_iteration_y    = 6;
            num_elems_written_per_iteration_x = 2;
            num_elems_written_per_iteration_y = 4;
        }
        else if(conv_stride_x == 2 && conv_stride_y == 2)
        {
            kernel_name                       = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32";
            num_elems_read_per_iteration_x    = 6;
            num_elems_read_per_iteration_y    = 5;
            num_elems_written_per_iteration_x = 2;
            num_elems_written_per_iteration_y = 2;
        }
        else
        {
            kernel_name                       = "depthwise_convolution_3x3";
            num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
            num_elems_written_per_iteration_y = 1;
            num_elems_read_per_iteration_x    = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
            num_elems_read_per_iteration_y    = 3;
        }
    }
    else
    {
        const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_data_type_quantized_per_channel(weights->data_type());

        kernel_name = is_qasymm ? "dwc_3x3_native_quantized8" : "depthwise_convolution_3x3";
        kernel_name += (is_qasymm && is_dot8_supported ? "_dot8" : "");
        kernel_name += (is_qasymm ? "_nchw" : "");

        num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
        num_elems_written_per_iteration_y = (is_qasymm && conv_stride_y == 1 && dilation.y() == 1) ? 2 : 1;
        num_elems_read_per_iteration_x    = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x + (conv_stride_x > 1 ? 1 : 0);
        num_elems_read_per_iteration_y    = num_elems_written_per_iteration_y + 2;
    }
    // The OpenCL routine convolution1x3 does loadn(addr), loadn(addr + dilation_x) and loadn(addr + 2 * dilation_x) on the input.
    // Each of the three convolution1x3 gets called by passing addr, (addr + dilation_y) and (addr + 2 * dilation_y)
    // Hence we must add 2 * dilation.x/y() to the number of elements read in those axes per thread
    num_elems_read_per_iteration_x += 2 * dilation.x();
    num_elems_read_per_iteration_y += 2 * dilation.y();

    // Create window and update padding
    Window win = calculate_max_window(*output, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));

    AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(),
                                       num_elems_read_per_iteration_x, num_elems_read_per_iteration_y,
                                       conv_stride_x, conv_stride_y);
    AccessWindowStatic    weights_access(weights, 0, 0, 3, 3);
    AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);

    bool window_changed = update_window_and_padding(win, input_access, weights_access, output_access);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

CLDepthwiseConvolutionLayer3x3NCHWKernel::CLDepthwiseConvolutionLayer3x3NCHWKernel()
    : _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
{
}

BorderSize CLDepthwiseConvolutionLayer3x3NCHWKernel::border_size() const
{
    return _border_size;
}

void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
                                                         const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
                                                         const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
{
    configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts);
}

void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
                                                         const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
                                                         const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(),
                                                  conv_info, depth_multiplier, act_info, dilation,
                                                  (output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
                                                  (output_shifts != nullptr) ? output_shifts->info() : nullptr));

    _input              = input;
    _output             = output;
    _weights            = weights;
    _biases             = biases;
    _conv_stride_x      = conv_info.stride().first;
    _conv_stride_y      = conv_info.stride().second;
    _conv_pad_left      = conv_info.pad_left();
    _conv_pad_top       = conv_info.pad_top();
    _output_multipliers = output_multipliers;
    _output_shifts      = output_shifts;
    _is_quantized       = is_data_type_quantized_asymmetric(input->info()->data_type());

    // Configure kernel window
    std::string     kernel_name;
    const GPUTarget gpu_target = get_target();

    auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, gpu_target, kernel_name, dilation);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure_internal(win_config.second);

    _border_size = BorderSize(input->info()->padding());

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
    build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(_output->info()->tensor_shape().z()));
    build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
    build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(_conv_stride_x));
    build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
    build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
    build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");

    if(_is_quantized)
    {
        const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
        const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
        const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();

        const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
        const bool is_dot8_supported        = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
        build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
        build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
        build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
        build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
        build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * iq_info.offset * wq_info.offset));
        build_opts.add_option_if(is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
        build_opts.add_option_if(is_dot8_supported, "-DIS_DOT8");

        // Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler
        float multiplier        = iq_info.scale * wq_info.scale / oq_info.scale;
        int   output_multiplier = 0;
        int   output_shift      = 0;
        quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
        build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
        build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));

        if(act_info.enabled())
        {
            int a_val{};
            int b_val{};
            std::tie(b_val, a_val) = get_quantized_activation_min_max(act_info, input->info()->data_type(), oq_info);

            const int o1 = oq_info.offset;

            build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
            build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
            build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));

            const float s1 = iq_info.scale;
            build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
            build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
        }

        build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
        build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
        build_opts.add_option("-DWEIGHTS_PROMOTED_TYPE=" + get_cl_promoted_type_from_data_type(weights->info()->data_type()));
    }
    else
    {
        build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
        build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
        build_opts.add_option_if(act_info.enabled(), "-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
        build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(win_config.second.x().step()));
    }

    build_opts.add_option_if(input->info()->data_type() == DataType::F16, "-DIS_F16");
    build_opts.add_option_if(input->info()->data_type() == DataType::F32, "-DIS_F32");

    _kernel = create_kernel(compile_context, kernel_name, build_opts.options());

    // Set config_id for enabling LWS tuning
    _config_id = kernel_name;
    _config_id += "_";
    _config_id += lower_string(string_from_data_type(input->info()->data_type()));
    _config_id += "_";
    _config_id += support::cpp11::to_string(input->info()->dimension(0));
    _config_id += "_";
    _config_id += support::cpp11::to_string(input->info()->dimension(1));
    _config_id += "_";
    _config_id += support::cpp11::to_string(input->info()->dimension(2));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(0));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(1));
}

Status CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
                                                          const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target,
                                                          const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
    std::string kernel_name;
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(),
                                                              conv_info, depth_multiplier, gpu_target, kernel_name, dilation)
                                .first);

    return Status{};
}

void CLDepthwiseConvolutionLayer3x3NCHWKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);

    // Create input window and adjust
    Window collapsed_in = collapsed;
    collapsed_in.adjust(Window::DimX, -_conv_pad_left, true);
    collapsed_in.adjust(Window::DimY, -_conv_pad_top, true);
    collapsed_in.set_dimension_step(Window::DimX, collapsed_in.x().step() * _conv_stride_x);
    collapsed_in.set_dimension_step(Window::DimY, collapsed_in.y().step() * _conv_stride_y);

    Window slice_in      = collapsed_in.first_slice_window_3D();
    Window slice_out     = collapsed.first_slice_window_3D();
    Window slice_weights = window.first_slice_window_3D();
    slice_weights.set_dimension_step(Window::DimX, 0);
    slice_weights.set_dimension_step(Window::DimY, 0);

    unsigned int idx = 3 * num_arguments_per_3D_tensor();

    // Set output multipliers in case of quantized data type
    if(_is_quantized)
    {
        Window slice;
        slice.use_tensor_dimensions(_output_multipliers->info()->tensor_shape());
        add_1D_tensor_argument(idx, _output_multipliers, slice);
        add_1D_tensor_argument(idx, _output_shifts, slice);
    }

    // Set biases
    if(_biases != nullptr)
    {
        Window slice_biases;
        slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
        add_1D_tensor_argument(idx, _biases, slice_biases);
    }

    do
    {
        idx = 0;
        add_3D_tensor_argument(idx, _input, slice_in);
        add_3D_tensor_argument(idx, _output, slice_out);
        add_3D_tensor_argument(idx, _weights, slice_weights);

        enqueue(queue, *this, slice_out, lws_hint());
    }
    while(collapsed.slide_window_slice_3D(slice_out) && collapsed_in.slide_window_slice_3D(slice_in));
}
} // namespace arm_compute