aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLChannelCombineKernel.cpp
blob: d729ebcfb3c38af34da87e9031b577e0b3c03458 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * Copyright (c) 2016, 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/CL/kernels/CLChannelCombineKernel.h"

#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLMultiImage.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/MultiImageInfo.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <set>
#include <string>

using namespace arm_compute;

CLChannelCombineKernel::CLChannelCombineKernel()
    : _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }
{
}

void CLChannelCombineKernel::configure(const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output)
{
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::YUYV422, Format::UYVY422);

    const Format fmt = output->info()->format();
    _planes[0]       = plane0;
    _planes[1]       = plane1;
    _planes[2]       = plane2;
    if(Format::RGBA8888 == fmt)
    {
        ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8);
        _planes[3] = plane3;
    }
    else
    {
        _planes[3] = nullptr;
    }
    _output       = output;
    _output_multi = nullptr;

    // Half the processed elements for U,V channels due to sub-sampling of 2
    if(Format::YUYV422 == fmt || Format::UYVY422 == fmt)
    {
        _x_subsampling = { { 1, 2, 2 } };
        _y_subsampling = { { 1, 2, 2 } };
    }
    else
    {
        _x_subsampling = { { 1, 1, 1 } };
        _y_subsampling = { { 1, 1, 1 } };
    }

    // Create kernel
    std::string kernel_name = "channel_combine_" + string_from_format(fmt);
    _kernel                 = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name));

    // Configure window
    constexpr unsigned int num_elems_processed_per_iteration = 16;

    Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal plane0_access(plane0->info(), 0, num_elems_processed_per_iteration);
    AccessWindowRectangle  plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
    AccessWindowRectangle  plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
    AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);

    update_window_and_padding(win, plane0_access, plane1_access, plane2_access, plane3_access, output_access);

    ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(),
                                                       plane1->info()->valid_region(),
                                                       plane2->info()->valid_region());
    if(plane3 != nullptr)
    {
        valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region);
    }
    output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape()));

    ICLKernel::configure(win);
}

void CLChannelCombineKernel::configure(const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output)
{
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
    ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
    ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444);

    _planes[0]           = plane0;
    _planes[1]           = plane1;
    _planes[2]           = plane2;
    _planes[3]           = nullptr;
    _output              = nullptr;
    _output_multi        = output;
    bool has_two_planars = false;

    // Set sub-sampling parameters for each plane
    const Format          fmt = output->info()->format();
    std::string           kernel_name;
    std::set<std::string> build_opts;

    if(Format::NV12 == fmt || Format::NV21 == fmt)
    {
        _x_subsampling = { { 1, 2, 2 } };
        _y_subsampling = { { 1, 2, 2 } };
        kernel_name    = "channel_combine_NV";
        build_opts.emplace(Format::NV12 == fmt ? "-DNV12" : "-DNV21");
        has_two_planars = true;
    }
    else
    {
        if(Format::IYUV == fmt)
        {
            _x_subsampling = { { 1, 2, 2 } };
            _y_subsampling = { { 1, 2, 2 } };
        }
        else
        {
            _x_subsampling = { { 1, 1, 1 } };
            _y_subsampling = { { 1, 1, 1 } };
        }

        kernel_name = "copy_planes_3p";
        build_opts.emplace(Format::IYUV == fmt ? "-DIYUV" : "-DYUV444");
    }

    // Create kernel
    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts));

    // Configure window
    constexpr unsigned int num_elems_processed_per_iteration = 16;

    Window win = calculate_max_window(*plane0->info(), Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal input_plane0_access(plane0->info(), 0, num_elems_processed_per_iteration);
    AccessWindowRectangle  input_plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
    AccessWindowRectangle  input_plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
    AccessWindowRectangle  output_plane0_access(output->plane(0)->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f, 1.f / _y_subsampling[1]);
    AccessWindowRectangle  output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
    AccessWindowRectangle  output_plane2_access(has_two_planars ? nullptr : output->plane(2)->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);

    update_window_and_padding(win,
                              input_plane0_access, input_plane1_access, input_plane2_access,
                              output_plane0_access, output_plane1_access, output_plane2_access);

    ValidRegion plane0_valid_region  = plane0->info()->valid_region();
    ValidRegion output_plane1_region = has_two_planars ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region();
    output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape()));
    output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape()));
    output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape()));

    ICLKernel::configure(win);
}

void CLChannelCombineKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);

    Window slice = window.first_slice_window_2D();

    do
    {
        // Subsampling in plane 1
        Window win_sub_plane1(slice);
        win_sub_plane1.set(Window::DimX, Window::Dimension(win_sub_plane1.x().start() / _x_subsampling[1], win_sub_plane1.x().end() / _x_subsampling[1], win_sub_plane1.x().step() / _x_subsampling[1]));
        win_sub_plane1.set(Window::DimY, Window::Dimension(win_sub_plane1.y().start() / _y_subsampling[1], win_sub_plane1.y().end() / _y_subsampling[1], 1));

        // Subsampling in plane 2
        Window win_sub_plane2(slice);
        win_sub_plane2.set(Window::DimX, Window::Dimension(win_sub_plane2.x().start() / _x_subsampling[2], win_sub_plane2.x().end() / _x_subsampling[2], win_sub_plane2.x().step() / _x_subsampling[2]));
        win_sub_plane2.set(Window::DimY, Window::Dimension(win_sub_plane2.y().start() / _y_subsampling[2], win_sub_plane2.y().end() / _y_subsampling[2], 1));

        unsigned int idx = 0;

        // Set inputs
        add_2D_tensor_argument(idx, _planes[0], slice);
        add_2D_tensor_argument(idx, _planes[1], win_sub_plane1);
        add_2D_tensor_argument(idx, _planes[2], win_sub_plane2);

        if(nullptr != _planes[3])
        {
            add_2D_tensor_argument(idx, _planes[3], slice);
        }

        // Set outputs
        if(nullptr != _output) // Single planar output
        {
            add_2D_tensor_argument(idx, _output, slice);
        }
        else // Multi-planar output
        {
            // Reduce slice in case of subsampling to avoid out-of bounds access
            slice.set(Window::DimY, Window::Dimension(slice.y().start() / _y_subsampling[1], slice.y().end() / _y_subsampling[1], 1));

            add_2D_tensor_argument(idx, _output_multi->cl_plane(0), slice);
            add_2D_tensor_argument(idx, _output_multi->cl_plane(1), win_sub_plane1);

            if(3 == num_planes_from_format(_output_multi->info()->format()))
            {
                add_2D_tensor_argument(idx, _output_multi->cl_plane(2), win_sub_plane2);
            }

            _kernel.setArg(idx++, slice.y().end());
        }

        enqueue(queue, *this, slice);
    }
    while(window.slide_window_slice_2D(slice));
}