aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/scale_quantized.cl
blob: 2aa7f185c6e5c855ae10e90916b9471f2f2df866 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * Copyright (c) 2018 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers_asymm.h"
#include "warp_helpers_quantized.h"

/** Transforms four 2D coordinates. This is used to map the output coordinates to the input coordinates.
 *
 * @param[in] coord 2D coordinates to transform.
 * @param[in] scale input/output scale ratio
 *
 * @return a float8 containing 4 2D transformed values in the input image.
 */
inline const float8 transform_bilinear_quantized(const float2 coord, const float2 scale)
{
    const float4 in_x_coords = (float4)(coord.s0, 1 + coord.s0, 2 + coord.s0, 3 + coord.s0);
#ifdef SAMPLING_POLICY_TOP_LEFT
    const float4 new_x = in_x_coords * (float4)(scale.s0);
    const float4 new_y = (float4)(coord.s1 * scale.s1);
    return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
#elif SAMPLING_POLICY_CENTER
    const float4 new_x = (in_x_coords + ((float4)(0.5f))) * (float4)(scale.s0) - (float4)(0.5f);
    const float4 new_y = (float4)((coord.s1 + 0.5f) * scale.s1 - 0.5f);
    return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
#else /* SAMPLING_POLICY */
#error("Unsupported sampling policy");
#endif /* SAMPLING_POLICY */
}

/** Performs an affine transformation on an image interpolating with the BILINEAR method.
 *
 * @note Sampling policy to used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT
 * @note Scale value for QASYMM8 data type to used is passed as -DSCALE=<VALUE> e.g. -DSCALE=0.5
 * @note Offset value for QASYMM8 data type to used is passed as -DOFFSET=<VALUE> e.g. -DOFFSET=1
 *
 * @param[in]  in_ptr                            Pointer to the source image. Supported data types: QASYMM8.
 * @param[in]  in_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in]  in_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  in_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in]  in_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  in_offset_first_element_in_bytes  The offset of the first element in the source image
 * @param[out] out_ptr                           Pointer to the destination image. Supported data types: U8, S16. (Must be the same as the input)
 * @param[in]  out_stride_x                      Stride of the destination image in X dimension (in bytes)
 * @param[in]  out_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  out_stride_y                      Stride of the destination image in Y dimension (in bytes)
 * @param[in]  out_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  out_offset_first_element_in_bytes The offset of the first element in the destination image
 * @param[in]  input_width                       Input image width
 * @param[in]  input_height                      Input image height
 * @param[in]  scale_x                           The scale factor along x dimension
 * @param[in]  scale_y                           The scale factor along y dimension
 */
__kernel void scale_bilinear_quantized_nchw(
    IMAGE_DECLARATION(in),
    IMAGE_DECLARATION(out),
    const float input_width,
    const float input_height,
    const float scale_x,
    const float scale_y)
{
    Image        in  = CONVERT_TO_IMAGE_STRUCT_NO_STEP(in);
    Image        out = CONVERT_TO_IMAGE_STRUCT(out);
    const float2 r   = (float2)(scale_x, scale_y);
    const float8 tc  = transform_bilinear_quantized(get_current_coords_quantized(), r);
    vstore4(bilinear_interpolate_with_border_quantized(&in, tc, input_width, input_height, BORDER_SIZE, SCALE, OFFSET), 0, (__global DATA_TYPE *)out.ptr);
}

#if defined(DEPTH_OUT)
/** Performs scale on an image interpolating with the BILINEAR method. (NHWC)
 *
 * @note Sampling policy to be used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT
 * @note Scale value for QASYMM8 data type to used is passed as -DSCALE=<VALUE> e.g. -DSCALE=0.5
 * @note Offset value for QASYMM8 data type to used is passed as -DOFFSET=<VALUE> e.g. -DOFFSET=1
 * @note If border mode replicate is used, is should be passed as -DBORDER_MODE_REPLICATE
 * @note Output tensor's depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH=16
 *
 * @param[in]  in_ptr                            Pointer to the source image. Supported data types: QASYMM8.
 * @param[in]  in_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in]  in_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  in_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in]  in_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  in_stride_z                       Stride of the source image in Z dimension (in bytes)
 * @param[in]  in_step_z                         src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  in_offset_first_element_in_bytes  The offset of the first element in the source image
 * @param[out] out_ptr                           Pointer to the destination image. Supported data types: same as @p in_ptr
 * @param[in]  out_stride_x                      Stride of the destination image in X dimension (in bytes)
 * @param[in]  out_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  out_stride_y                      Stride of the destination image in Y dimension (in bytes)
 * @param[in]  out_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  out_stride_z                      Stride of the destination image in Z dimension (in bytes)
 * @param[in]  out_step_z                        dst_stride_y * number of elements along Z processed per workitem(in bytes)
 * @param[in]  out_offset_first_element_in_bytes The offset of the first element in the destination image
 * @param[in]  input_width                       Input image width
 * @param[in]  input_height                      Input image height
 * @param[in]  scale_x                           The scale factor along x dimension
 * @param[in]  scale_y                           The scale factor along y dimension
 */
__kernel void scale_bilinear_quantized_nhwc(
    TENSOR4D_DECLARATION(in),
    TENSOR4D_DECLARATION(out),
    const float input_width,
    const float input_height,
    const float scale_x,
    const float scale_y)
{
    Tensor4D in  = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(in, 0);
    Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(out, DEPTH_OUT);

#ifdef SAMPLING_POLICY_TOP_LEFT
    const float new_x = get_global_id(1) * scale_x;
    const float new_y = (get_global_id(2) % DEPTH_OUT) * scale_y;
#elif SAMPLING_POLICY_CENTER
    const float new_x = (get_global_id(1) + 0.5f) * scale_x - 0.5f;
    const float new_y = ((get_global_id(2) % DEPTH_OUT) + 0.5f) * scale_y - 0.5f;
#else /* SAMPLING_POLICY */
#error("Unsupported sampling policy");
#endif /* SAMPLING_POLICY */

    const float new_xf      = floor(new_x);
    const float new_yf      = floor(new_y);
    float       clamped_x   = clamp(new_xf, 0.0f, input_width - 1);
    float       clamped_x1  = clamp(new_xf + 1, 0.0f, input_width - 1);
    float       clamped_x_  = clamped_x;
    float       clamped_x1_ = clamped_x1;
    const float clamped_y   = clamp(new_yf, 0.0f, input_height - 1);
    const float clamped_y1  = clamp(new_yf + 1, 0.0f, input_height - 1);

#ifndef BORDER_MODE_REPLICATE
    clamped_x1  = select(clamped_x1, 0.0f - BORDER_SIZE, new_yf + 1 < 0.f || new_yf + 1 > input_height - 1 || new_xf + 1 < 0.f || new_xf + 1 > input_width - 1);
    clamped_x_  = select(clamped_x_, 0.0f - BORDER_SIZE, new_yf + 1 > input_height - 1 || new_xf < 0.f || new_xf > input_width - 1);
    clamped_x   = select(clamped_x, 0.0f - BORDER_SIZE, new_yf < 0.f || new_yf > input_height - 1 || new_xf < 0.f || new_xf > input_width - 1);
    clamped_x1_ = select(clamped_x1_, 0.0f - BORDER_SIZE, new_xf + 1 < 0.f || new_xf + 1 > input_width - 1 || new_yf < 0.f || new_yf > input_height - 1);
#endif /* BORDER_MODE_REPLICATE */

    int4 ins = (int4)(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT))),
                      *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1_), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT))),
                      *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x_), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT))),
                      *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT))));

    const float  a      = new_x - new_xf;
    const float  b      = 1.f - a;
    const float  a1     = new_y - new_yf;
    const float  b1     = 1.f - a1;
    const float4 insf32 = convert_float4(ins - (int4)OFFSET) * (float4)SCALE;

    const float fr = ((insf32.s0 * b * b1) + (insf32.s1 * a * b1) + (insf32.s2 * b * a1) + (insf32.s3 * a * a1));

    DATA_TYPE res = CONVERT_SAT(convert_int_sat_rtp(fr / SCALE) + OFFSET, DATA_TYPE);

    *((__global DATA_TYPE *)out.ptr) = res;
}
#endif /* defined(DEPTH_OUT) */