aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/roi_pooling_layer.cl
blob: 0cf296c011a9e452a0ca26f0e81fff1386396c34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#if DATA_SIZE == 32
#define VEC_SIZE 4
#define VEC_MAX vec4_max
#elif DATA_SIZE == 16
#define VEC_SIZE 8
#define VEC_MAX vec8_max
#else /* DATA_SIZE not equals 32 or 16 */
#error "Unsupported data size"
#endif /* DATA_SIZE == 32 */

inline DATA_TYPE vec4_max(VEC_DATA_TYPE(DATA_TYPE, 4) vec)
{
    VEC_DATA_TYPE(DATA_TYPE, 2)
    temp = fmax(vec.lo, vec.hi);
    return fmax(temp.x, temp.y);
}

inline DATA_TYPE vec8_max(VEC_DATA_TYPE(DATA_TYPE, 8) vec)
{
    VEC_DATA_TYPE(DATA_TYPE, 4)
    temp = fmax(vec.lo, vec.hi);
    return vec4_max(temp);
}

/** Performs a roi pooling on a single output pixel.
 *
 * @param[in] input          Pointer to input Tensor3D struct.
 * @param[in] region_start_x Start x index projected onto the input tensor.
 * @param[in] region_end_x   End x index projected onto the input tensor.
 * @param[in] region_start_y Start y index projected onto the input tensor.
 * @param[in] region_end_y   End y index projected onto the input tensor.
 * @param[in] pz             z index of the input tensor.
 *
 * @return A max pooled value from the region specified in the input tensor.
 */
inline DATA_TYPE roi_pool_1x1(const Tensor3D *input, int region_start_x, int region_end_x, int region_start_y, int region_end_y, int pz)
{
    // Iterate through the pooling region
    if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
    {
        return (DATA_TYPE)0;
    }
    else
    {
        int num_iter = (int)((region_end_x - region_start_x) / VEC_SIZE);
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
        curr_max = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(-FLT_MAX);
        for(int j = region_start_y; j < region_end_y; ++j)
        {
            int i = region_start_x;
            for(; i < region_start_x + num_iter * VEC_SIZE; i += VEC_SIZE)
            {
                VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
                val      = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)tensor3D_offset(input, i, j, pz));
                curr_max = fmax(val, curr_max);
            }
            for(; i < region_end_x; ++i)
            {
                DATA_TYPE val = *(__global DATA_TYPE *)tensor3D_offset(input, i, j, pz);
                curr_max      = fmax(curr_max, val);
            }
        }
        return (DATA_TYPE)VEC_MAX(curr_max);
    }
}

/** Performs a roi pooling function.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16, F32;
 * @note Datasize must be passed using -DDATA_SIZE e.g. -DDATA_SIZE=32;
 * @note Input dimensions must be passed using -DMAX_DIM_X, -DMAX_DIM_Y and -DMAX_DIM_Z;
 * @note Pooled region dimensions must be passed using -DPOOLED_DIM_X and -DPOOLED_DIM_Y;
 * @note Spatial scale must be passed using -DSPATIAL_SCALE;
 *
 * @param[in]  input_ptr                            Pointer to the source image. Supported data types: F16, F32
 * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the pooled region of the source image as specifed by ROI
 * @param[in]  rois_ptr                             Pointer to the ROIs tensor. Layout: { batch_index, x1, y1, x2, y2 }. Supported data types: same as @p input_ptr
 * @param[in]  rois_stride_x                        Stride of the ROIs tensor in X dimension (in bytes)
 * @param[in]  rois_step_x                          Step of the ROIs tensor in X dimension (in bytes)
 * @param[in]  rois_stride_y                        Stride of the ROIs tensor in Y dimension (in bytes)
 * @param[in]  rois_step_y                          Step of the ROIs tensor in Y dimension (in bytes)
 * @param[in]  rois_offset_first_element_in_bytes   The offset of the first element in the ROIs tensor
 * @param[out] output_ptr                           Pointer to the destination image. Supported data types: F16, F32
 * @param[in]  output_stride_x                      Stride of the destination image in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination image in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image
 * @param[in]  input_stride_w                       Stride of the source image in W dimension (in bytes)
 * @param[in]  output_stride_w                      Stride of the destination image in W dimension (in bytes)
 */
__kernel void roi_pooling_layer(
    TENSOR3D_DECLARATION(input),
    IMAGE_DECLARATION(rois),
    TENSOR3D_DECLARATION(output),
    unsigned int input_stride_w, unsigned int output_stride_w)
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
    Image    rois   = CONVERT_TO_IMAGE_STRUCT_NO_STEP(rois);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);

    const int px = get_global_id(0);
    const int py = get_global_id(1);
    const int pw = get_global_id(2);

    // Load roi parameters
    // roi is laid out as follows { batch_index, x1, y1, x2, y2 }
    const ushort roi_batch = (ushort) * ((__global DATA_TYPE *)offset(&rois, 0, pw));
    const VEC_DATA_TYPE(DATA_TYPE, 4)
    roi               = vload4(0, (__global DATA_TYPE *)offset(&rois, 1, pw));
    const int2 roi_anchor = convert_int2_sat(round(convert_float2(roi.s01) * (float)SPATIAL_SCALE));
    const int2 roi_dims   = convert_int2_sat(fmax(round(convert_float2(roi.s23 - roi.s01) * (float)SPATIAL_SCALE), 1.f));

    // Calculate pooled region start and end
    const float2 spatial_indx     = (float2)(px, py);
    const float2 pooled_dims      = (float2)(POOLED_DIM_X, POOLED_DIM_Y);
    const int2   max_spatial_dims = (int2)(MAX_DIM_X, MAX_DIM_Y);
    int2         region_start     = convert_int2_sat(floor(spatial_indx / pooled_dims * convert_float2(roi_dims))) + roi_anchor;
    int2         region_end       = convert_int2_sat(floor((spatial_indx + 1) / pooled_dims * convert_float2(roi_dims))) + roi_anchor;

    region_start = clamp(region_start, 0, max_spatial_dims);
    region_end   = clamp(region_end, 0, max_spatial_dims);

    // Move input and output pointer across the fourth dimension
    input.ptr += roi_batch * input_stride_w;
    output.ptr += pw * output_stride_w;

    for(int pz = 0; pz < MAX_DIM_Z; ++pz)
    {
        *(__global DATA_TYPE *)tensor3D_offset(&output, px, py, pz) = (__global DATA_TYPE)roi_pool_1x1(&input,
                                                                                                       region_start.x,
                                                                                                       region_end.x,
                                                                                                       region_start.y,
                                                                                                       region_end.y, pz);
    }
}