aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/normalization_layer.cl
blob: 076b0d8909461fbfc6112ab0fd6f5aee0c6ef602 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

/** Apply cross map normalization.
 *
 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
 *
 * @param[in]  input_ptr                                   Pointer to the first source tensor. Supported data types: F16, F32
 * @param[in]  input_stride_x                              Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                                input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                              Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                                input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                              Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                                input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes         The offset of the first element in the first source tensor
 * @param[in]  squared_input_ptr                           Pointer to the second source tensor. Supported data types: F16, F32
 * @param[in]  squared_input_stride_x                      Stride of the second source tensor in X dimension (in bytes)
 * @param[in]  squared_input_step_x                        input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  squared_input_stride_y                      Stride of the second source tensor in Y dimension (in bytes)
 * @param[in]  squared_input_step_y                        input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  squared_input_stride_z                      Stride of the second source tensor in Z dimension (in bytes)
 * @param[in]  squared_input_step_z                        input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  squared_input_offset_first_element_in_bytes The offset of the second element in the second source tensor
 * @param[out] output_ptr                                  Pointer to the destination tensor. Supported data types: F16, F32
 * @param[in]  output_stride_x                             Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                               output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                             Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                               output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                             Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                               output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes        The offset of the first element in the destination tensor
 * @param[in]  coeff                                       Alpha parameter / norm_size
 * @param[in]  beta                                        Beta parameter in the normalization equation
 * @param[in]  kappa                                       Kappa parameter in the normalization equation
 * @param[in]  radius                                      Number of elements on the right or left side to normalize across
 */
__kernel void normalization_layer_cross_map(TENSOR3D_DECLARATION(input),
                                            TENSOR3D_DECLARATION(squared_input),
                                            TENSOR3D_DECLARATION(output),
                                            float coeff,
                                            float beta,
                                            float kappa,
                                            uint  radius)
{
    Tensor3D in         = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D squared_in = CONVERT_TO_TENSOR3D_STRUCT(squared_input);
    Tensor3D out        = CONVERT_TO_TENSOR3D_STRUCT(output);

    DATA_TYPE acc = 0;

    const int num_of_slices = get_global_size(2);
    const int current_slice = get_global_id(2);

    const int left_slice  = max(current_slice - (int)radius, (int)0);
    const int right_slice = min(current_slice + (int)radius, (int)(num_of_slices - 1));

    for(int i = left_slice; i <= right_slice; i++)
    {
        acc += *(__global DATA_TYPE *)tensor3D_offset(&squared_in, 0, 0, i - current_slice);
    }

    const float normalized = pow(kappa + coeff * (float)acc, beta);

    const float normalized_pixel = (float) * ((__global DATA_TYPE *)in.ptr) / normalized;

    *(__global DATA_TYPE *)out.ptr = CONVERT(normalized_pixel, DATA_TYPE);
}

/** Apply in map normalization.
 *
 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
 *
 * @param[in]  input_ptr                                   Pointer to the first source tensor. Supported data types: F16, F32
 * @param[in]  input_stride_x                              Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                                input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                              Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                                input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                              Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                                input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes         The offset of the first element in the first source tensor
 * @param[in]  squared_input_ptr                           Pointer to the second source tensor. Supported data types: F16, F32
 * @param[in]  squared_input_stride_x                      Stride of the second source tensor in X dimension (in bytes)
 * @param[in]  squared_input_step_x                        input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  squared_input_stride_y                      Stride of the second source tensor in Y dimension (in bytes)
 * @param[in]  squared_input_step_y                        input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  squared_input_stride_z                      Stride of the second source tensor in Z dimension (in bytes)
 * @param[in]  squared_input_step_z                        input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  squared_input_offset_first_element_in_bytes The offset of the second element in the second source tensor
 * @param[out] output_ptr                                  Pointer to the destination tensor. Supported data types: F16, F32
 * @param[in]  output_stride_x                             Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                               output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                             Stride of the first destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                               output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                             Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                               output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes        The offset of the first element in the destination tensor
 * @param[in]  coeff                                       Alpha parameter / norm_size
 * @param[in]  beta                                        Beta parameter in the normalization equation
 * @param[in]  kappa                                       Kappa parameter in the normalization equation
 * @param[in]  radius                                      Number of elements on the right or left side to normalize across
 */
__kernel void normalization_layer_in_map_1D(TENSOR3D_DECLARATION(input),
                                            TENSOR3D_DECLARATION(squared_input),
                                            TENSOR3D_DECLARATION(output),
                                            float coeff,
                                            float beta,
                                            float kappa,
                                            uint  radius)
{
    Tensor3D in         = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D squared_in = CONVERT_TO_TENSOR3D_STRUCT(squared_input);
    Tensor3D out        = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(DATA_TYPE, 4)
    acc_vec = 0;

    const int current_pos = get_global_id(0) << 2;

    const int left_pos  = max(current_pos - (int)radius, -3);
    const int right_pos = min(current_pos + (int)radius, (int)((get_global_size(0) << 2) + 3 - 1));

    for(int i = left_pos; i <= right_pos; i += 1)
    {
        acc_vec += vload4(0, (__global DATA_TYPE *)tensor3D_offset(&squared_in, i - current_pos, 0, 0));
    }

    const float4 normalized = pow((float4)kappa + coeff * (float4)acc_vec, beta);

    const float4 normalized_pixel = CONVERT(vload4(0, (__global DATA_TYPE *)in.ptr), float4) / normalized;

    vstore4(CONVERT(normalized_pixel, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)out.ptr);
}