aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nhwc/pooling_3d_layer_quantized.cl
blob: abf0db9d071113b90ffdbd5c778db9fd915ec7ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (c) 2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "tile_helpers.h" // Needed for GET_SPATIAL_IDX()

#if defined(POOL_AVG)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG)  */
#define POOL_OP(x, y) (max((x), (y)))
#endif /* defined(POOL_AVG) */

#define SQRT_OP(x) sqrt((x))

#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)

#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
#define VEC_FLOAT(VEC_SIZE) VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_INT(VEC_SIZE) VEC_DATA_TYPE(int, VEC_SIZE)
#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)
#define REQUANTIZE(VEC_SIZE, input, in_offset, out_offset, in_scale, out_scale, res)                                                                                 \
    {                                                                                                                                                                 \
        const VEC_FLOAT(VEC_SIZE) in_f32  = (CONVERT(input, VEC_FLOAT(VEC_SIZE)) - (VEC_FLOAT(VEC_SIZE))((float)in_offset)) * (VEC_FLOAT(VEC_SIZE))((float)in_scale); \
        const VEC_FLOAT(VEC_SIZE) out_f32 = in_f32 / ((VEC_FLOAT(VEC_SIZE))(float)out_scale) + ((VEC_FLOAT(VEC_SIZE))((float)out_offset));                            \
        res                               = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT(VEC_SIZE)), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));                                \
    }
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

#if defined(POOL_L2)
#error "L2 pooling is not supported"
#endif /* defined(POOL_L2) */

/** Performs 3d pooling layer of size equal to MxNXD. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be excluded, -DEXCLUDE_PADDING should be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are QASYMM8_SIGNED, QASYMM8
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X, -DPOOL_SIZE_Y, and -DPOOL_SIZE_Z. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4, -DPOOL_SIZE_Z=2
 * @note Input tensor width, height and depth must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT, and -DSRC_DEPTH
 * @note Output tensor height, channels, depth, and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS, -DDST_DEPTH, and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z which are the steps of the window along the x, y and z directions
 * @note Pool pads must be passed at compile time using -DPAD_X, -DPAD_Y, -DPAD_Z
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: QASYMM8_SIGNED, QASYMM8
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                         input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_stride_v                       Stride of the source tensor in V dimension (in bytes)
 * @param[in]  input_step_v                         input_stride_v * number of elements along V processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                        output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_stride_v                      Stride of the destination tensor in V dimension (in bytes)
 * @param[in]  output_step_v                        output_stride_v * number of elements along V processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_3d_layer_MxN_ndhwc_quantized(
    TENSOR5D_DECLARATION(input),
    TENSOR5D_DECLARATION(output))
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be shrunk to the closest smaller VEC_SIZE. This operation is performed on the host side
    int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
    int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);

    // The depth size dimension and the batch size dimension are collapsed over the height dimension
    int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
    int idx_out_d = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) % DST_DEPTH;
    int idx_out_n = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) / DST_DEPTH;

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_v;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_d *
                                           output_stride_w + idx_out_n * output_stride_v;

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = INITIAL_VALUE;

    int idx_in_w = idx_out_w * STRIDE_X - (int)PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - (int)PAD_Y;
    int idx_in_d = idx_out_d * STRIDE_Z - (int)PAD_Z;

    // The start of width to consider in calculation should exclude padding
    int pool_x_s = max((int)0, -idx_in_w);
    // Assumed Symmetric Padding (left padding = right padding = PAD_X), the filter end should be either the pool width or what is remaining from current pos to the (src width + pad right)
    int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH + PAD_X - idx_in_w);
    int pool_y_s = max((int)0, -idx_in_h);
    int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT + PAD_Y - idx_in_h);
    int pool_z_s = max((int)0, -idx_in_d);
    int pool_z_e = min((int)POOL_SIZE_Z, (int)SRC_DEPTH + PAD_Z - idx_in_d);

#if defined(POOL_AVG) && defined(EXCLUDE_PADDING)
    int filter_size = 0;
#elif defined(POOL_AVG) && !defined(EXCLUDE_PADDING) // defined(POOL_AVG) && defined(EXCLUDE_PADDING)
    int filter_size = pool_z_e * pool_y_e * pool_x_e;
#endif                                               // defined(POOL_AVG) && !defined(EXCLUDE_PADDING)

    // The end of width to consider in calculation should exclude PAD_X
    pool_x_e = min(pool_x_e, SRC_WIDTH - idx_in_w);
    pool_y_e = min(pool_y_e, SRC_HEIGHT - idx_in_h);
    pool_z_e = min(pool_z_e, SRC_DEPTH - idx_in_d);

    for(int z = pool_z_s; z < pool_z_e; ++z)
    {
        int depth_offset_src = (z + idx_in_d) * input_stride_w;
        for(int y = pool_y_s; y < pool_y_e; ++y)
        {
            int height_offset_src = (y + idx_in_h) * input_stride_z;
#pragma unroll 8
            for(int x = pool_x_s; x < pool_x_e; ++x)
            {
                int width_offset_src = (x + idx_in_w) * input_stride_y;

                VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
                data;
                VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
                data0;

                data  = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src));
                data0 = CONVERT(data, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));

                res0 = POOL_OP(res0, data0);

#if defined(POOL_AVG) && defined(EXCLUDE_PADDING)
                filter_size++;
#endif // defined(POOL_AVG) && defined(EXCLUDE_PADDING)
            }
        }
    }

#if defined(POOL_AVG)
    res0 = (res0 + (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))(filter_size >> 1)) / filter_size;
#endif // defined(POOL_AVG)

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    out_q0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));

#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
    REQUANTIZE(VEC_SIZE, out_q0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT, out_q0);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

    STORE_VECTOR_SELECT(out_q, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)