aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nchw/pooling_layer.cl
blob: 790ddb381a186ecd4d93edf85b1e427ce219584e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "repeat.h"
#include "tile_helpers.h"

#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */

#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))

#if defined(FP_MIXED_PRECISION)
#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \
    CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
#else /* defined(FP_MIXED_PRECISION) */
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
#endif /* defined(FP_MIXED_PRECISION) */

ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                                  const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int       start_x = get_global_id(0) * stride_x - pad_x;
    int       start_y = get_global_id(1) * stride_y - pad_y;
    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
#if defined(EXCLUDE_PADDING)
    start_x = max(0, start_x);
    start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
    return ((end_y - start_y) * (end_x - start_x));
}

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

/** Performs a pooling function of pool size equal to N  (NCHW)
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_MxN_nchw(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
    vdata               = INITIAL_VALUE;
    ACC_DATA_TYPE sdata = INITIAL_VALUE;

    // Load data
    for(int y = 0; y < POOL_SIZE_Y; y++)
    {
        int x = 0;
        for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
        {
            VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
            data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif /* defined(POOL_L2) */
            vdata = POOL_OP(vdata, data0);
        }

        // Leftover
        for(; x < (int)POOL_SIZE_X; ++x)
        {
            ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0)));
#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif /* defined(POOL_L2) */
            sdata = POOL_OP(sdata, data0);
        }
    }

    // Reduce result
    VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
    reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
    reduce2           = POOL_OP(reduce4.s01, reduce4.s23);
    ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
    res               = POOL_OP(res, sdata);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average pooling
    res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    // Store result
    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

inline void offset_no_padding_nchw(const Tensor3D *input, uint *offset_top, uint *offset_bottom)
{
    const int pad_horiz = PAD_TENSOR_LEFT + PAD_TENSOR_RIGHT;
    const int pad_vert  = PAD_TENSOR_TOP + PAD_TENSOR_BOTTOM;

    const int x = get_global_id(0) * STRIDE_X;
    const int y = get_global_id(1) * STRIDE_Y;
    const int z = get_global_id(2);

    //x axis: width, y axis: height, z axis: component
    const uint padded_offset = input->offset_first_element_in_bytes
                               + x * input->stride_x
                               + y * input->stride_y
                               + z * input->stride_z;

    const uint offset_base = padded_offset
                             - y * pad_horiz * sizeof(DATA_TYPE)                                               /* Horizontal padding for each row */
                             - PAD_TENSOR_TOP * input->stride_y                                                /* top padding */
                             - z * MAX_HEIGHT * pad_horiz * sizeof(DATA_TYPE) - z * pad_vert * input->stride_y /* Z plane padding */
                             - PAD_TENSOR_LEFT * sizeof(DATA_TYPE);

#if defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT)
    *offset_top = (uint)((offset_base / sizeof(DATA_TYPE)) % (TENSOR_CHANNEL * TENSOR_WIDTH * TENSOR_HEIGHT));
#else  /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */
    *offset_top = (uint)(offset_base / sizeof(DATA_TYPE));
#endif /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */

    *offset_bottom = *offset_top + input->stride_y / sizeof(DATA_TYPE) - pad_horiz;

    return;
}

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F32
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2_nchw_indices_fp32(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output),
    TENSOR3D_DECLARATION(indices))
{
    // Get pixels pointer
    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);

    // Load data
    float2 data0 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 0, 0));
    float2 data1 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));

    // Perform calculations
    float data0_max = POOL_OP(data0.s0, data0.s1);
    float data1_max = POOL_OP(data1.s0, data1.s1);
    float res       = POOL_OP(data0_max, data1_max);
    // Store result
    *(__global float *)output.ptr = res;

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

    uint offset_top    = 0;
    uint offset_bottom = 0;

    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);

    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));

    *(__global uint *)indices.ptr = index;

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
}

/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F16
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F16
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2_nchw_indices_fp16(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output),
    TENSOR3D_DECLARATION(indices))
{
    // Get pixels pointer
    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);

    // Load data
    half2 data0 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 0, 0));
    half2 data1 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 1, 0));

    // Perform calculations
    half data0_max = POOL_OP(data0.s0, data0.s1);
    half data1_max = POOL_OP(data1.s0, data1.s1);
    half res       = POOL_OP(data0_max, data1_max);
    // Store result
    *(__global half *)output.ptr = res;

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

    uint offset_top    = 0;
    uint offset_bottom = 0;

    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);

    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));

    *(__global uint *)indices.ptr = index;

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
}