aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/direct_convolution_1x1_3x3_5x5_quantized.cl
blob: 83da76785badccd9ebf59d675cd80eb477a0cc88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers_asymm.h"

#undef CONVERT_SAT

#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)

#if KERNEL_SIZE == 5

#if STRIDE_X == 1
#define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */

#define CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr)                                                    \
    ({                                                                                                               \
        int4 weights_values0 = convert_int4(vload4(0, weights_row_ptr));                                             \
        int  weights_value1  = convert_int(*(weights_row_ptr + 4));                                                  \
        int8 src0            = convert_int8(vload8(0, src_row_ptr));                                                 \
        int4 src1            = convert_int4(vload4(0, src_row_ptr + 8));                                             \
        acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset);                                   \
        acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
        acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
        acc += ((int8)(src0.s345, src0.s67, src1.s012) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
        acc += ((int8)(src0.s45, src0.s67, src1.s0123) + input_offset) * ((int8)weights_value1 + weight_offset);     \
    })

#define CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr)                                                    \
    ({                                                                                                               \
        int4  weights_values0 = convert_int4(vload4(0, weights_row_ptr));                                            \
        int   weights_value1  = convert_int(*(weights_row_ptr + 4));                                                 \
        int16 src0            = convert_int16(vload16(0, src_row_ptr));                                              \
        int4  src1            = convert_int4(vload4(0, src_row_ptr + 16));                                           \
        acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset);                              \
        acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset);         \
        acc += ((int8)(src0.s2468, src0.sACE, src1.s0) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
        acc += ((int8)(src0.s3579, src0.sBDF, src1.s1) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
        acc += ((int8)(src0.s468a, src0.sCE, src1.s02) + input_offset) * ((int8)weights_value1 + weight_offset);     \
    })

#elif KERNEL_SIZE == 3

#if STRIDE_X == 1
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */

#define CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)                                                    \
    ({                                                                                                               \
        int3 weights_values0 = convert_int3(vload3(0, weights_row_ptr));                                             \
        int8 src0            = convert_int8(vload8(0, src_row_ptr));                                                 \
        int2 src1            = convert_int2(vload2(0, src_row_ptr + 8));                                             \
        acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset);                                   \
        acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
        acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
    })

#define CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)                                                 \
    ({                                                                                                            \
        int3  weights_values0 = convert_int3(vload3(0, weights_row_ptr));                                         \
        int16 src0            = convert_int16(vload16(0, src_row_ptr));                                           \
        int   src1            = convert_int(*(src_row_ptr + 16));                                                 \
        acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset);                           \
        acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset);      \
        acc += ((int8)(src0.s2468, src0.sACE, src1) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
    })

#elif KERNEL_SIZE == 1

#if STRIDE_X == 3
#define INPUT_PIXEL extract_input_stride3
#elif STRIDE_X == 2
#define INPUT_PIXEL extract_input_stride2
#elif STRIDE_X == 1
#define INPUT_PIXEL extract_input_stride1

#else /* STRIDE_X not equals 1, 2 or 3 */
#error "Only support strides 1, 2 and 3"
#endif /* STRIDE_X */

/** Extracts a 1D horizontal vector from the input tensor with stride as 1.
 *
 * @param[in] input_pixel Pointer to the first pixel.
 *
 * @return extracted input pixels.
 */
inline uchar8 extract_input_stride1(__global const uchar *input_pixel)
{
    return vload8(0, input_pixel);
}

/** Extracts a 1D horizontal vector from the input tensor with stride as 2.
 *
 * @param[in] input_pixel Pointer to the first pixel.
 *
 * @return extracted input pixels.
 */
inline uchar8 extract_input_stride2(__global const uchar *input_pixel)
{
    uchar16 temp = vload16(0, input_pixel);
    return temp.s02468ace;
}

/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.
 *
 * @param[in] input_pixel Pointer to the first pixel.
 *
 * @return extracted input pixels.
 */
inline uchar8 extract_input_stride3(__global const uchar *input_pixel)
{
    uchar16 temp1 = vload16(0, input_pixel);
    uchar16 temp2 = vload16(0, input_pixel + 12);
    return (uchar8)(temp1.s0369, temp2.s0369);
}

#else /* KERNEL_SIZE not equals 1, 3 or 5 */
#error "Only kernel sizes 1, 3 and 5 are supported"
#endif /* KERNEL_SIZE */

/** This kernel performs a direct convolution to convolve the low three dimensions.
 *
 * @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1
 * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
 * @note If biases are used then -DHAS_BIAS has to be passed at compile time
 *
 * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
 * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
 * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
 * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p weights_ptr
 * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
 * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
 * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)
 * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
 * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
 * @param[in]  biases_ptr                            Pointer to the biases tensor. Supported data types: S32
 * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)
 * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor
 * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension
 * @param[in]  input_offset                          Input offset quantization parameter
 * @param[in]  weight_offset                         Weights offset quantization parameter
 * @param[in]  output_offset                         Output offset quantization parameter
 * @param[in]  output_multiplier                     Output integer multiplier quantization parameter
 * @param[in]  output_shift                          Output integer shift quantization parameter
 */
__kernel void direct_convolution_1x1_3x3_5x5_quantized(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst),
    TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
    VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
    unsigned int weights_stride_w,
    int          input_offset,
    int          weight_offset,
    int          output_offset,
    int          output_multiplier,
    int          output_shift)
{
    Image    src     = CONVERT_TO_IMAGE_STRUCT(src);
    Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
    Tensor3D dst     = CONVERT_TO_TENSOR3D_STRUCT(dst);

    int8 pixels0 = 0;

    __global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
    __global uchar *src_addr     = (__global uchar *)offset(&src, 0, 0);

    const int kernel_index = get_global_id(2);
    weights_addr += kernel_index * weights_stride_w;

    for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
    {
#if KERNEL_SIZE == 5
        CONVOLUTION1x5(pixels0, (__global uchar *)src_addr, (__global uchar *)weights_addr);
        CONVOLUTION1x5(pixels0, (__global uchar *)(src_addr + 1 * src_stride_y), (__global uchar *)(weights_addr + 1 * weights_stride_y));
        CONVOLUTION1x5(pixels0, (__global uchar *)(src_addr + 2 * src_stride_y), (__global uchar *)(weights_addr + 2 * weights_stride_y));
        CONVOLUTION1x5(pixels0, (__global uchar *)(src_addr + 3 * src_stride_y), (__global uchar *)(weights_addr + 3 * weights_stride_y));
        CONVOLUTION1x5(pixels0, (__global uchar *)(src_addr + 4 * src_stride_y), (__global uchar *)(weights_addr + 4 * weights_stride_y));
#elif KERNEL_SIZE == 3
        CONVOLUTION1x3(pixels0, (__global uchar *)(src_addr + 0 * src_stride_y), (__global uchar *)(weights_addr + 0 * weights_stride_y));
        CONVOLUTION1x3(pixels0, (__global uchar *)(src_addr + 1 * src_stride_y), (__global uchar *)(weights_addr + 1 * weights_stride_y));
        CONVOLUTION1x3(pixels0, (__global uchar *)(src_addr + 2 * src_stride_y), (__global uchar *)(weights_addr + 2 * weights_stride_y));
#elif KERNEL_SIZE == 1
        int weight       = convert_int(*(__global uchar *)weights_addr);
        int8 input_pixel = convert_int8(INPUT_PIXEL((__global uchar *)src_addr));
        pixels0 += (input_pixel + input_offset) * ((int8)weight + weight_offset);
#endif /* (KERNEL_SIZE == 1) || (KERNEL_SIZE == 3) || (KERNEL_SIZE == 5) */

        src_addr += src_stride_z;
        weights_addr += weights_stride_z;
    }

#ifdef HAS_BIAS
    Vector        biases    = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
    __global int *bias_addr = ((__global int *)(vector_offset(&biases, kernel_index)));
    pixels0 += (int8)(*bias_addr);
#endif /* defined(HAS_BIAS) */

    pixels0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(pixels0, output_multiplier, output_shift, 8);
    pixels0 = pixels0 + output_offset;

    vstore8(convert_uchar8_sat(pixels0), 0, (__global uchar *)dst.ptr);
}
#endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)

#if defined(VEC_SIZE)

#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
#define CONVERT_SAT_UCHAR_STR(x, size) (convert_uchar##size##_sat((x)))
#define CONVERT_SAT_UCHAR(x, size) CONVERT_SAT_UCHAR_STR(x, size)

/** This function computes the output stage of a depthwise convolution.
 *
 * @param[in] src_ptr                            Pointer to the source image. Supported data types: QASYMM8
 * @param[in] src_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in] src_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] src_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in] src_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] src_offset_first_element_in_bytes  The offset of the first element in the source image
 * @param[in] src_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in] src_step_z                         src_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_ptr                            Pointer to the destination tensor. Supported data types: QASYMM8
 * @param[in] dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in] dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in] dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_stride_z                       Stride of the destination tensor in Z dimension (in bytes)
 * @param[in] dst_step_z                         dst_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in] bias_ptr                           (Optional) Pointer to the biases vector. Supported data types: S32
 * @param[in] bias_stride_x                      (Optional) Stride of the biases vector in X dimension (in bytes)
 * @param[in] bias_step_x                        (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
 * @param[in] output_offset                      Quantized offset of zero point of the output tensor data range
 * @param[in] output_multiplier                  Output scale multiplier
 * @param[in] output_shift                       Output scale divisor exponent
 */
__kernel void output_stage_quantized(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst),
#if defined(HAS_BIAS)
    VECTOR_DECLARATION(bias),
#endif //defined(HAS_BIAS)
    int output_offset,
    int output_multiplier,
    int output_shift)
{
    Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
    Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
#if defined(HAS_BIAS)
    Vector bias = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);
#endif //defined(HAS_BIAS)

    // Load input
    VEC_INT vals = VLOAD(VEC_SIZE)(0, (__global int *)(src.ptr));

#if defined(HAS_BIAS)
    // Load and add bias
#if defined(NCHW)
    int bias_value = *((__global int *)(vector_offset(&bias, get_global_id(2))));
#else  // defined(NCHW)
    VEC_INT bias_value = VLOAD(VEC_SIZE)(0, ((__global int *)(vector_offset(&bias, get_global_id(0) * VEC_SIZE))));
#endif // defined(NCHW)

    vals += (VEC_INT)(bias_value);
#endif //defined(HAS_BIAS)

    vals = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(vals, output_multiplier, output_shift, VEC_SIZE);
    vals = vals + output_offset;

    // Store result in dst
    VSTORE(VEC_SIZE)
    (CONVERT_SAT_UCHAR(vals, VEC_SIZE), 0, (__global uchar *)dst.ptr);
}

#undef VEC_INT
#undef CONVERT_SAT_UCHAR_STR
#undef CONVERT_SAT_UCHAR

#endif // defined(VEC_SIZE)