aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/direct_convolution9x9.cl
blob: d0f635c6fa076703a0ff1858fb19bedcebfd6033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * Copyright (c) 2019 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#undef CONVERT_SAT

#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)

#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))

#define CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr)                                                                         \
    ({                                                                                                                                 \
        VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                                    \
        src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))(                                                                                          \
                PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE));                 \
        VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                                    \
        src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))(                                                                                          \
                PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE));               \
        VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                                    \
        weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))(                                                                               \
                          PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
        DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE);                                        \
        acc += src0 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0;                                                                 \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s345, src0.s67, src1.s012) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s4567, src1.s0123) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4;                \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s567, src1.s0123, src1.s4) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s67, src1.s012, src1.s345) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s7, src1.s0123, src1.s456) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7;        \
        acc += src1 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1;                                                                     \
    })

#define CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr)                                                                         \
    ({                                                                                                                                 \
        VEC_DATA_TYPE(DATA_TYPE, 16)                                                                                                   \
        src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))(                                                                                         \
                PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE),                  \
                PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE));               \
        VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                                    \
        src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))(                                                                                          \
                PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 17 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 18 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 19 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 20 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 21 * src_stride_y, DATA_TYPE),                \
                PTR_TO_VALUE(row_ptr + 22 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 23 * src_stride_y, DATA_TYPE));               \
        VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                                    \
        weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))(                                                                               \
                          PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE),  \
                          PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
        DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE);                                        \
        acc += src0.s02468ACE * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0;                                                       \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1;                \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s3579, src0.sBDF, src1.s1) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s468A, src0.sCE, src1.s02) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s579, src0.sBDF, src1.s13) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s68A, src0.sCE, src1.s024) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s79B, src0.sDF, src1.s135) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7;        \
        acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s8AC, src0.sE, src1.s0246) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1;            \
    })

#if defined(VEC_SIZE)
#define VFMA(acc, w, src0, src1, src2, src3, src4, src5, src6, src7) \
    ({                                                               \
        acc##0 = fma(src0, w, acc##0);                               \
        acc##1 = fma(src1, w, acc##1);                               \
        acc##2 = fma(src2, w, acc##2);                               \
        acc##3 = fma(src3, w, acc##3);                               \
        acc##4 = fma(src4, w, acc##4);                               \
        acc##5 = fma(src5, w, acc##5);                               \
        acc##6 = fma(src6, w, acc##6);                               \
        acc##7 = fma(src7, w, acc##7);                               \
    })

#define CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr)                       \
    ({                                                                                       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)row_ptr);                            \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + src_stride_y));           \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 2 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 3 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 4 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 5 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 6 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 7 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 8 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 9 * src_stride_y));       \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 10 * src_stride_y));     \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 11 * src_stride_y));     \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 12 * src_stride_y));     \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 13 * src_stride_y));     \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 14 * src_stride_y));     \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        src15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 15 * src_stride_y));     \
        \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 0 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 1 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 2 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 3 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 4 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 5 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 6 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 7 * weights_stride_y)); \
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)                                                   \
        w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 8 * weights_stride_y)); \
        \
        VFMA(acc, w0, src0, src1, src2, src3, src4, src5, src6, src7);                       \
        VFMA(acc, w1, src1, src2, src3, src4, src5, src6, src7, src8);                       \
        VFMA(acc, w2, src2, src3, src4, src5, src6, src7, src8, src9);                       \
        VFMA(acc, w3, src3, src4, src5, src6, src7, src8, src9, src10);                      \
        VFMA(acc, w4, src4, src5, src6, src7, src8, src9, src10, src11);                     \
        VFMA(acc, w5, src5, src6, src7, src8, src9, src10, src11, src12);                    \
        VFMA(acc, w6, src6, src7, src8, src9, src10, src11, src12, src13);                   \
        VFMA(acc, w7, src7, src8, src9, src10, src11, src12, src13, src14);                  \
        VFMA(acc, w8, src8, src9, src10, src11, src12, src13, src14, src15);                 \
    })

#if VEC_SIZE == 4
#define REDUCE(out, vec)            \
    ({                              \
        VEC_DATA_TYPE(DATA_TYPE, 2) \
        tmp1 = vec.s01 + vec.s23;   \
        out  = tmp1.s0 + tmp1.s1;   \
    })
#else // VEC_SIZE == 4
#error("Not supported")
#endif // VEC_SIZE == 4

#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "Not supported"
#endif // STRIDE_X == 1

#else // defined(VEC_SIZE)

#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr)
#elif STRIDE_X == 2 // STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "STRIDE_X larger than 2 is not supported"
#endif // STRIDE_X == 1

#endif // defined(VEC_SIZE)

//#if defined(VEC_SIZE)
/** This kernel performs a direct convolution to convolve the low three dimensions in a tensor with the NHWC data layout
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
 * @note If biases are used then -DHAS_BIAS has to be passed at compile time
 *
 * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
 * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
 * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr
 * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
 * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
 * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)
 * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
 * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
 * @param[in]  biases_ptr                            (Optional) Pointer to the biases tensor. Same as @p src_ptr
 * @param[in]  biases_stride_x                       (Optional) Stride of the biases tensor in X dimension (in bytes)
 * @param[in]  biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases tensor
 * @param[in]  weights_stride_w                      (Optional) Stride of the weights tensor in the 4th dimension
 */
__kernel void direct_convolution9x9_nhwc(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst),
    TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
    VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
    unsigned int weights_stride_w)
{
    Image    src     = CONVERT_TO_IMAGE_STRUCT(src);
    Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
    Tensor3D dst     = CONVERT_TO_TENSOR3D_STRUCT(dst);

    VEC_DATA_TYPE(DATA_TYPE, 8)
    values = 0;

#if defined(VEC_SIZE)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values0 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values1 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values2 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values3 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values4 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values5 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values6 = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    values7 = 0;
#define STEP_X (VEC_SIZE)
#else // defined(VEC_SIZE)
#define STEP_X (1)
#endif // defined(VEC_SIZE)

    const int id0 = get_global_id(0);
    const int id1 = get_global_id(1);
    const int id2 = get_global_id(2);

    __global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
    __global uchar *src_addr     = (__global uchar *)offset(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;

    weights_addr += id0 * weights_stride_w;

#if(PAD_TOP == 1)
    const int coordy = id2 - PAD_TOP;
    for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
    {
        if(coordy < 0) // special case Z = -1 doesn't exists
        {
            //skip first row and load the two next ones
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        }
        else if(coordy == (DST_HEIGHT - PAD_TOP - 1))
        {
            // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
            // Z axis has no padding at all.
            CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
        }
        else
        {
            CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        }
        src_addr += STEP_X * sizeof(DATA_TYPE);
        weights_addr += STEP_X * sizeof(DATA_TYPE);
    }
#elif(PAD_TOP == 2) // PAD_TOP == 1
    const int coordy = id2 * STRIDE_Y;
    for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
    {
        if(coordy == 0) // special case Z = -2 doesn't exists
        {
            //skip first row and load the two next ones
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        }
        else if(coordy == 1) // special case Z = -1 doesn't exists
        {
            //skip first row and load the two next ones
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        }
        else if(coordy == (SRC_HEIGHT - 5))
        {
            // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
            // Z axis has no padding at all.
            CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
        }
        else if(coordy == (SRC_HEIGHT - 6))
        {
            // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
            // Z axis has no padding at all.
            CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
        }
        else
        {
            CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
            CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
            CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        }
        src_addr += STEP_X * sizeof(DATA_TYPE);
        weights_addr += STEP_X * sizeof(DATA_TYPE);
    }

#else  // PAD_TOP == 1
    for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
    {
        CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
        CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
        CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
        src_addr += STEP_X * sizeof(DATA_TYPE);
        weights_addr += STEP_X * sizeof(DATA_TYPE);
    }
#endif // PAD_TOP == 1

#if defined(VEC_SIZE)
    REDUCE(values.s0, values0);
    REDUCE(values.s1, values1);
    REDUCE(values.s2, values2);
    REDUCE(values.s3, values3);
    REDUCE(values.s4, values4);
    REDUCE(values.s5, values5);
    REDUCE(values.s6, values6);
    REDUCE(values.s7, values7);
#endif // defined(VEC_SIZE)

#if defined(HAS_BIAS)
    Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
    values += (VEC_DATA_TYPE(DATA_TYPE, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, id0)));
#endif // defined(HAS_BIAS)

    *((__global DATA_TYPE *)(dst.ptr + 0 * dst_stride_y)) = values.s0;
    *((__global DATA_TYPE *)(dst.ptr + 1 * dst_stride_y)) = values.s1;
    *((__global DATA_TYPE *)(dst.ptr + 2 * dst_stride_y)) = values.s2;
    *((__global DATA_TYPE *)(dst.ptr + 3 * dst_stride_y)) = values.s3;
    *((__global DATA_TYPE *)(dst.ptr + 4 * dst_stride_y)) = values.s4;
    *((__global DATA_TYPE *)(dst.ptr + 5 * dst_stride_y)) = values.s5;
    *((__global DATA_TYPE *)(dst.ptr + 6 * dst_stride_y)) = values.s6;
    *((__global DATA_TYPE *)(dst.ptr + 7 * dst_stride_y)) = values.s7;
#undef STEP_X
}
#endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)