aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/depthwise_convolution.cl
blob: 411e097dc8d58cf8ddbd7ec3da4bdddb88d1abc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "helpers.h"

#if defined(CONV_STRIDE_X)

#if CONV_STRIDE_X == 1
#define convolution1x3 convolution1x3_stride_1
#elif CONV_STRIDE_X == 2
#define convolution1x3 convolution1x3_stride_2
#elif CONV_STRIDE_X == 3
#define convolution1x3 convolution1x3_stride_3
#else /* CONV_STRIDE_X */
#error "Stride not supported"
#endif /* CONV_STRIDE_X */

/** Compute a 1D horizontal convolution of size 3 and stride 1 for floating point type.
 *
 * @param[in] left_pixel   Pointer to the left pixel.
 * @param[in] left_coeff   Weight of the left pixel
 * @param[in] middle_coeff Weight of the middle pixel
 * @param[in] right_coeff  Weight of the right pixel
 *
 * @return a float2 containing 2 convoluted values.
 */
inline float2 convolution1x3_stride_1(__global const uchar *left_pixel,
                                      const float           left_coeff,
                                      const float           middle_coeff,
                                      const float           right_coeff)
{
    float4 temp = vload4(0, (__global float *)left_pixel);

    float2 left   = CONVERT(temp.s01, float2);
    float2 middle = CONVERT(temp.s12, float2);
    float2 right  = CONVERT(temp.s23, float2);

    return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}

/** Compute a 1D horizontal convolution of size 3 and stride 2 for floating point type.
 *
 * @param[in] left_pixel   Pointer to the left pixel.
 * @param[in] left_coeff   Weight of the left pixel
 * @param[in] middle_coeff Weight of the middle pixel
 * @param[in] right_coeff  Weight of the right pixel
 *
 * @return a float2 containing 2 convoluted values.
 */
inline float2 convolution1x3_stride_2(__global const uchar *left_pixel,
                                      const float           left_coeff,
                                      const float           middle_coeff,
                                      const float           right_coeff)
{
    float4 temp0 = vload4(0, (__global float *)left_pixel);
    float  temp1 = *((__global float *)(left_pixel + 4 * sizeof(float)));

    float2 left   = CONVERT(temp0.s02, float2);
    float2 middle = CONVERT(temp0.s13, float2);
    float2 right  = CONVERT((float2)(temp0.s2, temp1), float2);

    return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}

/** Compute a 1D horizontal convolution of size 3 and stride 3 for floating point type.
 *
 * @param[in] left_pixel   Pointer to the left pixel.
 * @param[in] left_coeff   Weight of the left pixel
 * @param[in] middle_coeff Weight of the middle pixel
 * @param[in] right_coeff  Weight of the right pixel
 *
 * @return a float2 containing 2 convoluted values.
 */
inline float2 convolution1x3_stride_3(__global const uchar *left_pixel,
                                      const float           left_coeff,
                                      const float           middle_coeff,
                                      const float           right_coeff)
{
    float4 temp0 = vload4(0, (__global float *)left_pixel);
    float2 temp1 = vload2(0, (__global float *)(left_pixel + 4 * sizeof(float)));

    float2 left   = CONVERT(temp0.s03, float2);
    float2 middle = CONVERT((float2)(temp0.s1, temp1.s0), float2);
    float2 right  = CONVERT((float2)(temp0.s2, temp1.s1), float2);

    return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}

/** Apply a 3x3 convolution matrix to a single channel F32 input image and return the result.
 *
 * Convolution matrix layout:
 *
 * [ mat0, mat1, mat2 ]\n
 * [ mat3, mat4, mat5 ]\n
 * [ mat6, mat7, mat8 ]\n
 *
 * @param[in] src  A pointer to source Image structure
 * @param[in] mat0 Coefficient from the convolution matrix
 * @param[in] mat1 Coefficient from the convolution matrix
 * @param[in] mat2 Coefficient from the convolution matrix
 * @param[in] mat3 Coefficient from the convolution matrix
 * @param[in] mat4 Coefficient from the convolution matrix
 * @param[in] mat5 Coefficient from the convolution matrix
 * @param[in] mat6 Coefficient from the convolution matrix
 * @param[in] mat0 Coefficient from the convolution matrix
 * @param[in] mat7 Coefficient from the convolution matrix
 * @param[in] mat8 Coefficient from the convolution matrix
 *
 * @return a float2 containing 2 convoluted values.
 */
inline float2 convolution3x3(
    Image      *src,
    const float mat0, const float mat1, const float mat2,
    const float mat3, const float mat4, const float mat5,
    const float mat6, const float mat7, const float mat8)
{
    float2 pixels;

    pixels = convolution1x3(offset(src, 0, 0), mat0, mat1, mat2);
    pixels += convolution1x3(offset(src, 0, 1), mat3, mat4, mat5);
    pixels += convolution1x3(offset(src, 0, 2), mat6, mat7, mat8);

    return pixels;
}

/** This function computes the horizontal integral of the image.
  *
  * @param[in] src_ptr                               Pointer to the source image. Supported data types: U8
  * @param[in] src_stride_x                          Stride of the source image in X dimension (in bytes)
  * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in] src_stride_y                          Stride of the source image in Y dimension (in bytes)
  * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
  * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source image
  * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
  * @param[in] src_step_z                            src_stride_z * number of elements along Y processed per workitem(in bytes)
  * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: F16/F32
  * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
  * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
  * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
  * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
  * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
  * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
  * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: F16/F32
  * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
  * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
  * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
  * @param[in] weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
  * @param[in] weights_step_z                        weights_stride_z * number of elements along Y processed per workitem(in bytes)
  * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
  * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: F16/F32
  * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
  * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
  */

__kernel void depthwise_convolution_3x3(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst),
    TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
    ,
    VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
    Image    src     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
    Image    dst     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
    Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT(weights);
#if defined(HAS_BIAS)
    Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif //defined(HAS_BIAS)

    uchar3 offset          = (uchar3)(0, 1, 2) * (uchar3)weights_stride_y;
    float3 weights_values0 = vload3(0, (__global float *)(weights.ptr + offset.s0));
    float3 weights_values1 = vload3(0, (__global float *)(weights.ptr + offset.s1));
    float3 weights_values2 = vload3(0, (__global float *)(weights.ptr + offset.s2));

    float2 pixels = convolution3x3(&src, weights_values0.s0, weights_values0.s1, weights_values0.s2,
                                   weights_values1.s0, weights_values1.s1, weights_values1.s2,
                                   weights_values2.s0, weights_values2.s1, weights_values2.s2);
#if defined(HAS_BIAS)
    pixels += (float2)(*((__global float *)(biases.ptr + get_global_id(2) * biases_stride_x)));
#endif //defined(HAS_BIAS)

    vstore2(pixels, 0, (__global float *)dst.ptr);
}

#endif //defined(CONV_STRIDE_X)

#if defined(SRC_WIDTH) && defined(DATA_TYPE)
/** This kernel reshapes each of the tensor's low three dimensions to single rows.
 *
 * @note Datatype and source width should be given as a preprocessor argument using -DDATA_TYPE=type and -DSRC_WIDTH=width. e.g. -DSRC_WIDTH=128
 *
 * @param[in]  src_ptr                              Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  src_stride_x                         Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                           src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                         Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                           src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                         Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                           src_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes    The offset of the first element in the source tensor
 * @param[out] dst_ptr                              Pointer to the destination tensor. Same as @p src_ptr
 * @param[in]  dst_stride_x                         Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                           dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                         Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                           dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes    The offset of the first element in the destination tensor
 * @param[in]  biases_ptr                           (Optional) Pointer to the biases vector. Supported data types: F16/F32
 * @param[in]  biases_stride_x                      (Optional) Stride of the biases vector in X dimension (in bytes)
 * @param[in]  biases_step_x                        (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
 */
__kernel void depthwise_weights_reshape(
    TENSOR3D_DECLARATION(src),
    IMAGE_DECLARATION(dst)
#ifdef HAS_BIAS
    ,
    VECTOR_DECLARATION(biases)
#endif /* HAS_BIAS */
)
{
    Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
#ifdef HAS_BIAS
    Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif /* HAS_BIAS */

    __global DATA_TYPE *input_ptr = (__global DATA_TYPE *)src.ptr;
    __global uchar *output_ptr    = dst_ptr + dst_offset_first_element_in_bytes + get_global_id(1) * SRC_WIDTH * dst_stride_x + get_global_id(2) * dst_stride_y;

    for(int i = 0; i < SRC_WIDTH; ++i, ++input_ptr)
    {
        *((__global DATA_TYPE *)(output_ptr + i * dst_stride_x)) = *input_ptr;
    }

#if defined(HAS_BIAS)
    if(get_global_id(1) == 0)
    {
        *((__global DATA_TYPE *)(output_ptr + SRC_WIDTH * get_global_size(1) * dst_stride_x)) = *((__global float *)(biases.ptr + get_global_id(2) * biases_stride_x));
    }
#endif // defined(HAS_BIAS)
}
#endif //defined(SRC_WIDTH) && defined(DATA_TYPE)

#if defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DATA_TYPE)
/** This kernel performs a reshaping of the input tensor to a tensor used to perform depthwise convolution using vector to matrix multiplication.
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note The convolution information must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y, -DPAD_LEFT, -DPAD_TOP, -DPAD_RIGHT, -DPAD_BOTTOM, -DKERNEL_WIDHT, -DKERNEL_HEIGHT, -DSRC_WIDTH, -DSRC_HEIGHT
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */

__kernel void depthwise_im2col(TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst))
{
    Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);

    const int src_pixel_linear = get_global_id(1) * STRIDE_X;
    const int full_length      = SRC_WIDTH + PAD_LEFT + PAD_RIGHT;
    const int max_initial_x    = STRIDE_X * (((full_length - KERNEL_WIDTH) / STRIDE_X) + 1);

    const int src_x = -PAD_LEFT + src_pixel_linear % max_initial_x;
    const int src_y = -PAD_TOP + src_pixel_linear / max_initial_x * STRIDE_Y;
    const int src_z = get_global_id(2);

    __global uchar *input_ptr      = src_ptr + src_offset_first_element_in_bytes + src_z * src_stride_z;
    __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst.ptr));

    for(int y = src_y; y < src_y + KERNEL_HEIGHT; ++y)
    {
        for(int x = src_x; x < src_x + KERNEL_WIDTH; ++x, ++output_ptr)
        {
            if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
            {
                *output_ptr = 0;
            }
            else
            {
                *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
            }
        }
    }
#if defined(HAS_BIAS)
    *output_ptr = (DATA_TYPE)(1);
#endif // defined(HAS_BIAS)
}

#endif //defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_WIDTH) && defined(DATA_TYPE)

#if defined(CONV_WIDTH) && defined(CONV_HEIGHT) && defined(DATA_TYPE)

/** This kernel performs a reshaping of the output of the depthwise generic convolution.
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note The convolution information must be passed at compile time using -DCONV_WIDTH, -DCONV_HEIGHT, e.g -DCONV_WIDTH=32, -DCONV_HEIGHT=42
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void depthwise_vector_to_tensor(
    VECTOR_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    Vector src = CONVERT_TO_VECTOR_STRUCT(src);

    const int patch_size = CONV_WIDTH * CONV_HEIGHT;
    const int id0        = get_global_id(0);
    const int z          = id0 / patch_size;
    const int index2D    = id0 - z * patch_size;

    __global uchar *out_ptr          = dst_ptr + dst_offset_first_element_in_bytes + index2D % CONV_WIDTH * dst_stride_x + index2D / CONV_WIDTH * dst_stride_y + z * dst_stride_z;
    *((__global DATA_TYPE *)out_ptr) = *((__global DATA_TYPE *)src.ptr);
}

#endif //defined(CONV_WIDTH) && defined(CONV_HEIGHT) && defined(DATA_TYPE)