aboutsummaryrefslogtreecommitdiff
path: root/include/CL/cl_half.h
blob: ecc42233220284c51bdd8fc01d446ec77232ac50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*******************************************************************************
 * Copyright (c) 2019-2020 The Khronos Group Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

/**
 * This is a header-only utility library that provides OpenCL host code with
 * routines for converting to/from cl_half values.
 *
 * Example usage:
 *
 *    #include <CL/cl_half.h>
 *    ...
 *    cl_half h = cl_half_from_float(0.5f, CL_HALF_RTE);
 *    cl_float f = cl_half_to_float(h);
 */

#ifndef OPENCL_CL_HALF_H
#define OPENCL_CL_HALF_H

#include <CL/cl_platform.h>

#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif


/**
 * Rounding mode used when converting to cl_half.
 */
typedef enum
{
  CL_HALF_RTE, // round to nearest even
  CL_HALF_RTZ, // round towards zero
  CL_HALF_RTP, // round towards positive infinity
  CL_HALF_RTN, // round towards negative infinity
} cl_half_rounding_mode;


/* Private utility macros. */
#define CL_HALF_EXP_MASK 0x7C00
#define CL_HALF_MAX_FINITE_MAG 0x7BFF


/*
 * Utility to deal with values that overflow when converting to half precision.
 */
static inline cl_half cl_half_handle_overflow(cl_half_rounding_mode rounding_mode,
                                              uint16_t sign)
{
  if (rounding_mode == CL_HALF_RTZ)
  {
    // Round overflow towards zero -> largest finite number (preserving sign)
    return (sign << 15) | CL_HALF_MAX_FINITE_MAG;
  }
  else if (rounding_mode == CL_HALF_RTP && sign)
  {
    // Round negative overflow towards positive infinity -> most negative finite number
    return (1 << 15) | CL_HALF_MAX_FINITE_MAG;
  }
  else if (rounding_mode == CL_HALF_RTN && !sign)
  {
    // Round positive overflow towards negative infinity -> largest finite number
    return CL_HALF_MAX_FINITE_MAG;
  }

  // Overflow to infinity
  return (sign << 15) | CL_HALF_EXP_MASK;
}

/*
 * Utility to deal with values that underflow when converting to half precision.
 */
static inline cl_half cl_half_handle_underflow(cl_half_rounding_mode rounding_mode,
                                               uint16_t sign)
{
  if (rounding_mode == CL_HALF_RTP && !sign)
  {
    // Round underflow towards positive infinity -> smallest positive value
    return (sign << 15) | 1;
  }
  else if (rounding_mode == CL_HALF_RTN && sign)
  {
    // Round underflow towards negative infinity -> largest negative value
    return (sign << 15) | 1;
  }

  // Flush to zero
  return (sign << 15);
}


/**
 * Convert a cl_float to a cl_half.
 */
static inline cl_half cl_half_from_float(cl_float f, cl_half_rounding_mode rounding_mode)
{
  // Type-punning to get direct access to underlying bits
  union
  {
    cl_float f;
    uint32_t i;
  } f32;
  f32.f = f;

  // Extract sign bit
  uint16_t sign = f32.i >> 31;

  // Extract FP32 exponent and mantissa
  uint32_t f_exp = (f32.i >> (CL_FLT_MANT_DIG - 1)) & 0xFF;
  uint32_t f_mant = f32.i & ((1 << (CL_FLT_MANT_DIG - 1)) - 1);

  // Remove FP32 exponent bias
  int32_t exp = f_exp - CL_FLT_MAX_EXP + 1;

  // Add FP16 exponent bias
  uint16_t h_exp = (uint16_t)(exp + CL_HALF_MAX_EXP - 1);

  // Position of the bit that will become the FP16 mantissa LSB
  uint32_t lsb_pos = CL_FLT_MANT_DIG - CL_HALF_MANT_DIG;

  // Check for NaN / infinity
  if (f_exp == 0xFF)
  {
    if (f_mant)
    {
      // NaN -> propagate mantissa and silence it
      uint16_t h_mant = (uint16_t)(f_mant >> lsb_pos);
      h_mant |= 0x200;
      return (sign << 15) | CL_HALF_EXP_MASK | h_mant;
    }
    else
    {
      // Infinity -> zero mantissa
      return (sign << 15) | CL_HALF_EXP_MASK;
    }
  }

  // Check for zero
  if (!f_exp && !f_mant)
  {
    return (sign << 15);
  }

  // Check for overflow
  if (exp >= CL_HALF_MAX_EXP)
  {
    return cl_half_handle_overflow(rounding_mode, sign);
  }

  // Check for underflow
  if (exp < (CL_HALF_MIN_EXP - CL_HALF_MANT_DIG - 1))
  {
    return cl_half_handle_underflow(rounding_mode, sign);
  }

  // Check for value that will become denormal
  if (exp < -14)
  {
    // Denormal -> include the implicit 1 from the FP32 mantissa
    h_exp = 0;
    f_mant |= 1 << (CL_FLT_MANT_DIG - 1);

    // Mantissa shift amount depends on exponent
    lsb_pos = -exp + (CL_FLT_MANT_DIG - 25);
  }

  // Generate FP16 mantissa by shifting FP32 mantissa
  uint16_t h_mant = (uint16_t)(f_mant >> lsb_pos);

  // Check whether we need to round
  uint32_t halfway = 1 << (lsb_pos - 1);
  uint32_t mask = (halfway << 1) - 1;
  switch (rounding_mode)
  {
    case CL_HALF_RTE:
      if ((f_mant & mask) > halfway)
      {
        // More than halfway -> round up
        h_mant += 1;
      }
      else if ((f_mant & mask) == halfway)
      {
        // Exactly halfway -> round to nearest even
        if (h_mant & 0x1)
          h_mant += 1;
      }
      break;
    case CL_HALF_RTZ:
      // Mantissa has already been truncated -> do nothing
      break;
    case CL_HALF_RTP:
      if ((f_mant & mask) && !sign)
      {
        // Round positive numbers up
        h_mant += 1;
      }
      break;
    case CL_HALF_RTN:
      if ((f_mant & mask) && sign)
      {
        // Round negative numbers down
        h_mant += 1;
      }
      break;
  }

  // Check for mantissa overflow
  if (h_mant & 0x400)
  {
    h_exp += 1;
    h_mant = 0;
  }

  return (sign << 15) | (h_exp << 10) | h_mant;
}


/**
 * Convert a cl_double to a cl_half.
 */
static inline cl_half cl_half_from_double(cl_double d, cl_half_rounding_mode rounding_mode)
{
  // Type-punning to get direct access to underlying bits
  union
  {
    cl_double d;
    uint64_t i;
  } f64;
  f64.d = d;

  // Extract sign bit
  uint16_t sign = f64.i >> 63;

  // Extract FP64 exponent and mantissa
  uint64_t d_exp = (f64.i >> (CL_DBL_MANT_DIG - 1)) & 0x7FF;
  uint64_t d_mant = f64.i & (((uint64_t)1 << (CL_DBL_MANT_DIG - 1)) - 1);

  // Remove FP64 exponent bias
  int64_t exp = d_exp - CL_DBL_MAX_EXP + 1;

  // Add FP16 exponent bias
  uint16_t h_exp = (uint16_t)(exp + CL_HALF_MAX_EXP - 1);

  // Position of the bit that will become the FP16 mantissa LSB
  uint32_t lsb_pos = CL_DBL_MANT_DIG - CL_HALF_MANT_DIG;

  // Check for NaN / infinity
  if (d_exp == 0x7FF)
  {
    if (d_mant)
    {
      // NaN -> propagate mantissa and silence it
      uint16_t h_mant = (uint16_t)(d_mant >> lsb_pos);
      h_mant |= 0x200;
      return (sign << 15) | CL_HALF_EXP_MASK | h_mant;
    }
    else
    {
      // Infinity -> zero mantissa
      return (sign << 15) | CL_HALF_EXP_MASK;
    }
  }

  // Check for zero
  if (!d_exp && !d_mant)
  {
    return (sign << 15);
  }

  // Check for overflow
  if (exp >= CL_HALF_MAX_EXP)
  {
    return cl_half_handle_overflow(rounding_mode, sign);
  }

  // Check for underflow
  if (exp < (CL_HALF_MIN_EXP - CL_HALF_MANT_DIG - 1))
  {
    return cl_half_handle_underflow(rounding_mode, sign);
  }

  // Check for value that will become denormal
  if (exp < -14)
  {
    // Include the implicit 1 from the FP64 mantissa
    h_exp = 0;
    d_mant |= (uint64_t)1 << (CL_DBL_MANT_DIG - 1);

    // Mantissa shift amount depends on exponent
    lsb_pos = (uint32_t)(-exp + (CL_DBL_MANT_DIG - 25));
  }

  // Generate FP16 mantissa by shifting FP64 mantissa
  uint16_t h_mant = (uint16_t)(d_mant >> lsb_pos);

  // Check whether we need to round
  uint64_t halfway = (uint64_t)1 << (lsb_pos - 1);
  uint64_t mask = (halfway << 1) - 1;
  switch (rounding_mode)
  {
    case CL_HALF_RTE:
      if ((d_mant & mask) > halfway)
      {
        // More than halfway -> round up
        h_mant += 1;
      }
      else if ((d_mant & mask) == halfway)
      {
        // Exactly halfway -> round to nearest even
        if (h_mant & 0x1)
          h_mant += 1;
      }
      break;
    case CL_HALF_RTZ:
      // Mantissa has already been truncated -> do nothing
      break;
    case CL_HALF_RTP:
      if ((d_mant & mask) && !sign)
      {
        // Round positive numbers up
        h_mant += 1;
      }
      break;
    case CL_HALF_RTN:
      if ((d_mant & mask) && sign)
      {
        // Round negative numbers down
        h_mant += 1;
      }
      break;
  }

  // Check for mantissa overflow
  if (h_mant & 0x400)
  {
    h_exp += 1;
    h_mant = 0;
  }

  return (sign << 15) | (h_exp << 10) | h_mant;
}


/**
 * Convert a cl_half to a cl_float.
 */
static inline cl_float cl_half_to_float(cl_half h)
{
  // Type-punning to get direct access to underlying bits
  union
  {
    cl_float f;
    uint32_t i;
  } f32;

  // Extract sign bit
  uint16_t sign = h >> 15;

  // Extract FP16 exponent and mantissa
  uint16_t h_exp = (h >> (CL_HALF_MANT_DIG - 1)) & 0x1F;
  uint16_t h_mant = h & 0x3FF;

  // Remove FP16 exponent bias
  int32_t exp = h_exp - CL_HALF_MAX_EXP + 1;

  // Add FP32 exponent bias
  uint32_t f_exp = exp + CL_FLT_MAX_EXP - 1;

  // Check for NaN / infinity
  if (h_exp == 0x1F)
  {
    if (h_mant)
    {
      // NaN -> propagate mantissa and silence it
      uint32_t f_mant = h_mant << (CL_FLT_MANT_DIG - CL_HALF_MANT_DIG);
      f_mant |= 0x400000;
      f32.i = (sign << 31) | 0x7F800000 | f_mant;
      return f32.f;
    }
    else
    {
      // Infinity -> zero mantissa
      f32.i = (sign << 31) | 0x7F800000;
      return f32.f;
    }
  }

  // Check for zero / denormal
  if (h_exp == 0)
  {
    if (h_mant == 0)
    {
      // Zero -> zero exponent
      f_exp = 0;
    }
    else
    {
      // Denormal -> normalize it
      // - Shift mantissa to make most-significant 1 implicit
      // - Adjust exponent accordingly
      uint32_t shift = 0;
      while ((h_mant & 0x400) == 0)
      {
        h_mant <<= 1;
        shift++;
      }
      h_mant &= 0x3FF;
      f_exp -= shift - 1;
    }
  }

  f32.i = (sign << 31) | (f_exp << 23) | (h_mant << 13);
  return f32.f;
}


#undef CL_HALF_EXP_MASK
#undef CL_HALF_MAX_FINITE_MAG


#ifdef __cplusplus
}
#endif


#endif  /* OPENCL_CL_HALF_H */