aboutsummaryrefslogtreecommitdiff
path: root/examples/neon_opticalflow.cpp
blob: ff9478cc1857cb984758a5718f898361a010058e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
 * Copyright (c) 2019 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/NEFunctions.h"

#include "arm_compute/core/Types.h"
#include "utils/ImageLoader.h"
#include "utils/Utils.h"

#include <fstream>
#include <sstream>
#include <vector>

using namespace arm_compute;
using namespace utils;

class NeonOpticalFlowExample : public Example
{
public:
    NeonOpticalFlowExample()
        : input_points(100), output_points(100), point_estimates(100)
    {
    }

    bool do_setup(int argc, char **argv) override
    {
        if(argc < 5)
        {
            // Print help
            std::cout << "Usage: ./build/neon_opticalflow [src_1st.ppm] [src_2nd.ppm] [keypoints] [estimates]\n\n";
            const unsigned int img_width  = 64;
            const unsigned int img_height = 64;
            const unsigned int rect_x     = 20;
            const unsigned int rect_y     = 40;
            const unsigned int rect_s     = 8;
            const unsigned int offsetx    = 24;
            const unsigned int offsety    = 3;
            std::cout << "No input_image provided, creating test data:\n";
            std::cout << "\t Image src_1st = (" << img_width << "," << img_height << ")" << std::endl;
            std::cout << "\t Image src_2nd = (" << img_width << "," << img_height << ")" << std::endl;
            init_img(src_1st, img_width, img_height, rect_x, rect_y, rect_s);
            init_img(src_2nd, img_width, img_height, rect_x + offsetx, rect_y + offsety, rect_s);
            const int num_points = 4;
            input_points.resize(num_points);
            point_estimates.resize(num_points);
            const std::array<unsigned int, num_points> tracking_coordsx = { rect_x - 1, rect_x, rect_x + 1, rect_x + 2 };
            const std::array<unsigned int, num_points> tracking_coordsy = { rect_y - 1, rect_y, rect_y + 1, rect_y + 2 };
            const std::array<unsigned int, num_points> estimate_coordsx = { rect_x + offsetx - 1, rect_x + offsetx, rect_x + offsetx + 1, rect_x + offsetx + 2 };
            const std::array<unsigned int, num_points> estimate_coordsy = { rect_y + offsety - 1, rect_y + offsety, rect_y + offsety + 1, rect_y + offsety + 2 };

            for(int k = 0; k < num_points; ++k)
            {
                auto &keypoint           = input_points.at(k);
                keypoint.x               = tracking_coordsx[k];
                keypoint.y               = tracking_coordsy[k];
                keypoint.tracking_status = 1;
            }
            for(int k = 0; k < num_points; ++k)
            {
                auto &keypoint           = point_estimates.at(k);
                keypoint.x               = estimate_coordsx[k];
                keypoint.y               = estimate_coordsy[k];
                keypoint.tracking_status = 1;
            }
        }
        else
        {
            load_ppm(argv[1], src_1st);
            load_ppm(argv[2], src_2nd);
            load_keypoints(argv[3], input_points);
            load_keypoints(argv[4], point_estimates);
        }

        print_points(input_points, "Tracking points : ");
        print_points(point_estimates, "Estimates points : ");

        const unsigned int num_levels = 3;
        // Initialise and allocate pyramids
        PyramidInfo pyramid_info(num_levels, SCALE_PYRAMID_HALF, src_1st.info()->tensor_shape(), src_1st.info()->format());
        pyr_1st.init_auto_padding(pyramid_info);
        pyr_2nd.init_auto_padding(pyramid_info);

        pyrf_1st.configure(&src_1st, &pyr_1st, BorderMode::UNDEFINED, 0);
        pyrf_2nd.configure(&src_2nd, &pyr_2nd, BorderMode::UNDEFINED, 0);

        output_points.resize(input_points.num_values());

        optkf.configure(&pyr_1st, &pyr_2nd,
                        &input_points, &point_estimates, &output_points,
                        Termination::TERM_CRITERIA_BOTH, 0.01f, 15, 5, true, BorderMode::UNDEFINED, 0);

        pyr_1st.allocate();
        pyr_2nd.allocate();

        return true;
    }
    void do_run() override
    {
        //Execute the functions:
        pyrf_1st.run();
        pyrf_2nd.run();
        optkf.run();
    }
    void do_teardown() override
    {
        print_points(output_points, "Output points : ");
    }

private:
    /** Loads the input keypoints from a file into an array
     *
     * @param[in]  fn  Filename containing the keypoints. Each line must have two values X Y.
     * @param[out] img Reference to an unintialised KeyPointArray
     */
    bool load_keypoints(const std::string &fn, KeyPointArray &array)
    {
        assert(!fn.empty());
        std::ifstream f(fn);
        if(f.is_open())
        {
            std::cout << "Reading points from " << fn << std::endl;
            std::vector<KeyPoint> v;
            for(std::string line; std::getline(f, line);)
            {
                std::stringstream ss(line);
                std::string       xcoord;
                std::string       ycoord;
                getline(ss, xcoord, ' ');
                getline(ss, ycoord, ' ');
                KeyPoint kp;
                kp.x               = std::stoi(xcoord);
                kp.y               = std::stoi(ycoord);
                kp.tracking_status = 1;
                v.push_back(kp);
            }
            const int num_points = v.size();
            array.resize(num_points);
            for(int k = 0; k < num_points; ++k)
            {
                auto &keypoint = array.at(k);
                keypoint       = v[k];
            }
            return true;
        }
        else
        {
            std::cout << "Cannot open keypoints file " << fn << std::endl;
            return false;
        }
    }

    /** Creates and Image and fills it with the ppm data from the file
     *
     * @param[in]  fn  PPM filename to be loaded
     * @param[out] img Reference to an unintialised image instance
     */
    bool load_ppm(const std::string &fn, Image &img)
    {
        assert(!fn.empty());
        PPMLoader ppm;
        ppm.open(fn);
        ppm.init_image(img, Format::U8);
        img.allocator()->allocate();
        if(ppm.is_open())
        {
            std::cout << "Reading image " << fn << std::endl;
            ppm.fill_image(img);
            return true;
        }
        else
        {
            std::cout << "Cannot open " << fn << std::endl;
            return false;
        }
    }
    /** Creates and Image and draws a square in the specified coordinares.
     *
     * @param[out] img             Reference to an unintialised image instance
     * @param[in]  img_width       Width of the image to be created
     * @param[in]  img_height      Height of the image to be created
     * @param[in]  square_center_x Coordinate along x-axis to be used as the center for the square
     * @param[in]  square_center_y Coordinate along y-axis to be used as the center for the square
     * @param[in]  square_size     Size in pixels to be used for the square
     */
    void init_img(Image &img, unsigned int img_width, unsigned int img_height,
                  unsigned int square_center_x, unsigned int square_center_y,
                  unsigned int square_size)
    {
        img.allocator()->init(TensorInfo(img_width, img_height, Format::U8));
        img.allocator()->allocate();
        const unsigned int square_half = square_size / 2;
        // assert the square is in the bounds of the image
        assert(square_center_x > square_half && square_center_x + square_half < img_width);
        assert(square_center_y > square_half && square_center_y + square_half < img_height);
        // get ptr to the top left pixel for the squeare
        std::fill(img.buffer(), img.buffer() + img_width * img_height, 0);
        for(unsigned int i = 0; i < square_size; ++i)
        {
            for(unsigned int j = 0; j < square_size; ++j)
            {
                uint8_t *ptr = img.ptr_to_element(Coordinates(square_center_x - square_half + j, square_center_y - square_half + i));
                *ptr         = 0xFF;
            }
        }
    }
    /** Prints an array of keypoints and an optional label
     *
     * @param[in] a   Keypoint array to be printed
     * @param[in] str Label to be printed before the array
     */
    void print_points(const KeyPointArray &a, const std::string &str = "")
    {
        std::cout << str << std::endl;
        for(unsigned int k = 0; k < a.num_values(); ++k)
        {
            auto kp = a.at(k);
            std::cout << "\t "
                      << " (x,y) = (" << kp.x << "," << kp.y << ")";
            std::cout << " strength = " << kp.strength << " "
                      << " scale = " << kp.scale << " orientation " << kp.orientation << " status " << kp.tracking_status << " err = " << kp.error << std::endl;
        }
    }

    Pyramid               pyr_1st{};
    Pyramid               pyr_2nd{};
    NEGaussianPyramidHalf pyrf_1st{};
    NEGaussianPyramidHalf pyrf_2nd{};
    NEOpticalFlow         optkf{};
    Image                 src_1st{}, src_2nd{};
    KeyPointArray         input_points;
    KeyPointArray         output_points;
    KeyPointArray         point_estimates;
};

/** Main program for optical flow test
 *
 * @param[in] argc Number of arguments
 * @param[in] argv Arguments ( [optional] Path to PPM image to process )
 */
int main(int argc, char **argv)
{
    return utils::run_example<NeonOpticalFlowExample>(argc, argv);
}