aboutsummaryrefslogtreecommitdiff
path: root/examples/neon_gemm_s8_f32.cpp
blob: 7c1497ec41224c75facad1b471f0fcf538913aa2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (c) 2020-2021, 2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/WindowIterator.h"
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"

#include "support/ToolchainSupport.h"
#include "utils/Utils.h"

#include <cstdlib>

using namespace arm_compute;
using namespace utils;

QuantizationInfo dynamic_qinfo(QuantizationInfo qinfo)
{
    return QuantizationInfo(qinfo.scale(), qinfo.offset(), true);
}
void set_qinfo_dynamic(Tensor &t)
{
    t.info()->set_quantization_info(dynamic_qinfo(t.info()->quantization_info()));
}

void quantize(Tensor &qt, const Tensor &t, float min, float max)
{
    DataType dt = DataType::QASYMM8_SIGNED;

    // Determine the scale
    const float scale = (max - min) / 256.0f;

    // Determine the zero-point; using affine equation val = (qval-zerop) * scale
    const float zero_point = -128.0f - min / scale;

    QuantizationInfo qinfo(scale, (int32_t)round(zero_point), true);

    // We now have the quantisation info and can configure the quantised tensor
    qt.allocator()->init(TensorInfo(t.info()->tensor_shape(), 1, dt, qinfo));
    qt.allocator()->allocate();
    NEQuantizationLayer quantization;
    quantization.configure(&t, &qt);
    quantization.run();
}

void invert_qinfo_offset(Tensor &t)
{
    QuantizationInfo qinfo = t.info()->quantization_info();
    t.info()->set_quantization_info(QuantizationInfo(qinfo.scale()[0], -qinfo.offset()[0], qinfo.is_dynamic()));
}

void print_quantization_info(const Tensor &t, const std::string &name_prefix)
{
    QuantizationInfo qinfo = t.info()->quantization_info();
    std::cout << name_prefix << "_qinfo="
              << "QuantizationInfo(" << qinfo.scale()[0] << ", " << qinfo.offset()[0] << ")\n";
}

int main(int argc, char **argv)
{
    size_t M = 4;
    size_t N = 4;
    size_t K = 4;

    // Parse args
    if (argc < 3) /* case default matrix sizes */
    {
        // Print help
        std::cout << "Usage: ./build/neon_gemm_qasymm8 M N K\n";
        std::cout << "Too few or no inputs provided. Using default M=4, N=4, K=4\n\n";
    }
    else /* case M N K arguments provided */
    {
        M = strtol(argv[1], nullptr, 10);
        N = strtol(argv[2], nullptr, 10);
        K = strtol(argv[3], nullptr, 10);
    }

    /*** Floating point matrix multiplication ***/

    // Initialise input matrices
    NEGEMM fgemm{};

    Tensor src1;
    Tensor src2;
    Tensor dst;
    src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32));
    src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32));
    dst.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
    fgemm.configure(&src1, &src2, nullptr, &dst, 1, 0);

    // Allocate matrices
    src1.allocator()->allocate();
    src2.allocator()->allocate();
    dst.allocator()->allocate();

    float min1 = 0.0f;
    float max1 = 1.0f;
    fill_random_tensor(src1, 0, min1, max1);

    float min2 = -1.0f;
    float max2 = 2.0f;
    fill_random_tensor(src2, 1, min2, max2);

    // Run single precision gemm and print result
    fgemm.run();

#if ARM_COMPUTE_DEBUG_ENABLED
    std::cout << "# F32 GEMM result:\n";
    std::cout << "src1=[ \n";
    src1.print(std::cout);
    std::cout << "] \n";
    std::cout << "src2=[ \n";
    src2.print(std::cout);
    std::cout << "] \n";
    std::cout << "dst=[ \n";
    dst.print(std::cout);
    std::cout << "] \n";
#endif // ARM_COMPUTE_DEBUG_ENABLED

    Tensor q_src1;
    quantize(q_src1, src1, min1, max1);
    print_quantization_info(q_src1, "src1");
    q_src1.info()->set_are_values_constant(false);

    // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
    // compared to NEQuantizeLayer
    invert_qinfo_offset(q_src1);

    Tensor q_src2;
    quantize(q_src2, src2, min2, max2);
    print_quantization_info(q_src2, "src2");
    q_src2.info()->set_are_values_constant(false);

    // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
    // compared to NEQuantizeLayer
    invert_qinfo_offset(q_src2);

    // q_dst will be Dequantized to F32 so it doesn't need a QuantizationInfo
    Tensor q_dst;
    q_dst.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));

    // Configure low precision gemm and initialise result tensor (pre-output)
    NEGEMMLowpMatrixMultiplyCore qgemm;
    qgemm.configure(&q_src1, &q_src2, nullptr, &q_dst);

    q_dst.allocator()->allocate();

    // Run low precision matrix multiply kernel
    qgemm.run();

#if ARM_COMPUTE_DEBUG_ENABLED
    // Print quantized source matrices
    std::cout << "q_src1=[ \n";
    q_src1.print(std::cout);
    std::cout << "] \n";
    std::cout << "q_src2=[ \n";
    q_src2.print(std::cout);
    std::cout << "] \n";
    std::cout << "# Lowp GEMM output (FP32):\n";
    std::cout << "q_dst=[ \n";
    q_dst.print(std::cout);
    std::cout << "] \n";

    // Expected result
    std::cout << "# Expected result:\n";
    std::cout << "dst=[ \n";
    dst.print(std::cout);
    std::cout << "] \n";
#endif // ARM_COMPUTE_DEBUG_ENABLED

    // Rerun to test the ability to modify the Tensor contents and QuantizationInfo (dynamic quantization)
    min1 = -1.0f;
    max1 = 1.0f;
    fill_random_tensor(src1, 2, min1, max1);

#if ARM_COMPUTE_DEBUG_ENABLED
    std::cout << "# Refilled src1\n";
    std::cout << "src1=[ \n";
    src1.print(std::cout);
    std::cout << "] \n";
    std::cout << "src2=[ \n";
    src2.print(std::cout);
    std::cout << "] \n";
#endif // ARM_COMPUTE_DEBUG_ENABLED

    fgemm.run();

    quantize(q_src1, src1, min1, max1);
    set_qinfo_dynamic(q_src1);
    print_quantization_info(q_src1, "src1");

    // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
    // compared to NEQuantizeLayer
    invert_qinfo_offset(q_src1);

    qgemm.run();

#if ARM_COMPUTE_DEBUG_ENABLED
    // Print quantized source matrices
    std::cout << "q_src1=[ \n";
    q_src1.print(std::cout);
    std::cout << "] \n";
    std::cout << "q_src2=[ \n";
    q_src2.print(std::cout);
    std::cout << "] \n";
    std::cout << "# Lowp GEMM output (FP32):\n";
    std::cout << "q_dst=[ \n";
    q_dst.print(std::cout);
    std::cout << "] \n";

    // Expected result
    std::cout << "# Expected result:\n";
    std::cout << "dst=[ \n";
    dst.print(std::cout);
    std::cout << "] \n";
#endif // ARM_COMPUTE_DEBUG_ENABLED
}