aboutsummaryrefslogtreecommitdiff
path: root/examples/neon_copy_objects.cpp
blob: 6e9ebcaad5f65644ba41f466808dc1e5a66e03de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 * Copyright (c) 2016-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/NEFunctions.h"

#include "utils/Utils.h"

#include <cstring>
#include <iostream>

using namespace arm_compute;
using namespace utils;

class NEONCopyObjectsExample : public Example
{
public:
    bool do_setup(int argc, char **argv) override
    {
        ARM_COMPUTE_UNUSED(argc);
        ARM_COMPUTE_UNUSED(argv);

        /** [Copy objects example] */
        constexpr unsigned int width  = 4;
        constexpr unsigned int height = 3;
        constexpr unsigned int batch  = 2;

        src_data = new float[width * height * batch];
        dst_data = new float[width * height * batch];

        // Fill src_data with pseudo(meaningless) values:
        for (unsigned int b = 0; b < batch; b++)
        {
            for (unsigned int h = 0; h < height; h++)
            {
                for (unsigned int w = 0; w < width; w++)
                {
                    src_data[b * (width * height) + h * width + w] = static_cast<float>(100 * b + 10 * h + w);
                }
            }
        }

        // Initialize the tensors dimensions and type:
        const TensorShape shape(width, height, batch);
        input.allocator()->init(TensorInfo(shape, 1, DataType::F32));
        output.allocator()->init(TensorInfo(shape, 1, DataType::F32));

        // Configure softmax:
        softmax.configure(&input, &output);

        // Allocate the input / output tensors:
        input.allocator()->allocate();
        output.allocator()->allocate();

        // Fill the input tensor:
        // Simplest way: create an iterator to iterate through each element of the input tensor:
        Window input_window;
        input_window.use_tensor_dimensions(input.info()->tensor_shape());
        std::cout << " Dimensions of the input's iterator:\n";
        std::cout << " X = [start=" << input_window.x().start() << ", end=" << input_window.x().end()
                  << ", step=" << input_window.x().step() << "]\n";
        std::cout << " Y = [start=" << input_window.y().start() << ", end=" << input_window.y().end()
                  << ", step=" << input_window.y().step() << "]\n";
        std::cout << " Z = [start=" << input_window.z().start() << ", end=" << input_window.z().end()
                  << ", step=" << input_window.z().step() << "]\n";

        // Create an iterator:
        Iterator input_it(&input, input_window);

        // Iterate through the elements of src_data and copy them one by one to the input tensor:
        // This is equivalent to:
        // for( unsigned int z = 0; z < batch; ++z)
        // {
        //   for( unsigned int y = 0; y < height; ++y)
        //   {
        //     for( unsigned int x = 0; x < width; ++x)
        //     {
        //       *reinterpret_cast<float*>( input.buffer() + input.info()->offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x];
        //     }
        //   }
        // }
        // Except it works for an arbitrary number of dimensions
        execute_window_loop(
            input_window,
            [&](const Coordinates &id)
            {
                std::cout << "Setting item [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
                *reinterpret_cast<float *>(input_it.ptr()) =
                    src_data[id.z() * (width * height) + id.y() * width + id.x()];
            },
            input_it);

        // More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor:
        Window output_window;
        output_window.use_tensor_dimensions(
            output.info()->tensor_shape(),
            /* first_dimension =*/Window::DimY); // Iterate through the rows (not each element)
        std::cout << " Dimensions of the output's iterator:\n";
        std::cout << " X = [start=" << output_window.x().start() << ", end=" << output_window.x().end()
                  << ", step=" << output_window.x().step() << "]\n";
        std::cout << " Y = [start=" << output_window.y().start() << ", end=" << output_window.y().end()
                  << ", step=" << output_window.y().step() << "]\n";
        std::cout << " Z = [start=" << output_window.z().start() << ", end=" << output_window.z().end()
                  << ", step=" << output_window.z().step() << "]\n";

        // Create an iterator:
        Iterator output_it(&output, output_window);

        // Iterate through the rows of the output tensor and copy them to dst_data:
        // This is equivalent to:
        // for( unsigned int z = 0; z < batch; ++z)
        // {
        //   for( unsigned int y = 0; y < height; ++y)
        //   {
        //     memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()->offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float));
        //   }
        // }
        // Except it works for an arbitrary number of dimensions
        execute_window_loop(
            output_window,
            [&](const Coordinates &id)
            {
                std::cout << "Copying one row starting from [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
                // Copy one whole row:
                memcpy(dst_data + id.z() * (width * height) + id.y() * width, output_it.ptr(), width * sizeof(float));
            },
            output_it);

        /** [Copy objects example] */

        return true;
    }
    void do_run() override
    {
        // Run softmax:
        softmax.run();
    }
    void do_teardown() override
    {
        delete[] src_data;
        delete[] dst_data;
    }

private:
    Tensor         input{}, output{};
    float         *src_data{};
    float         *dst_data{};
    NESoftmaxLayer softmax{};
};
/** Main program for the copy objects test
 *
 * @param[in] argc Number of arguments
 * @param[in] argv Arguments
 */
int main(int argc, char **argv)
{
    return utils::run_example<NEONCopyObjectsExample>(argc, argv);
}