aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NESymm.h
blob: 924840930a79b5dc5bb9029b4e88bb4e4dec926b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_NESYMM_H
#define ARM_COMPUTE_NESYMM_H

#include "arm_compute/core/NEON/NEMath.h"
#include <arm_neon.h>

namespace arm_compute
{
using qsymm8_t  = int8_t;  /**< 8 bit quantized symmetric scalar value */
using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */

using qsymm16x8_t   = int16x8_t;   /**< 16 bit quantized symmetric vector with 8 elements */
using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */

/** Performs final quantization step on 8 signed 16-bit elements
 *
 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
 *
 * @param[in] in_s32                       Input to be quantized.
 * @param[in] result_fixedpoint_multiplier Result multiplier parameter
 * @param[in] result_shift                 Result shift parameter
 * @param[in] min_s16                      Relu lower bound
 * @param[in] max_s16                      Relu upper bound
 *
 * @return Quantized values
 */
template <bool is_bounded_relu>
int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32,
                                      int          result_fixedpoint_multiplier,
                                      int32_t      result_shift,
                                      int16x8_t    min_s16,
                                      int16x8_t    max_s16)
{
    if(result_shift < 0)
    {
        in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift));
        in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift));

        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
        // Round to the nearest division by a power-of-two using result_shift_s32
        in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
        in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
    }

    // Convert S32 to S16
    int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));

    if(is_bounded_relu)
    {
        out_s16 = vmaxq_s16(out_s16, min_s16);
        out_s16 = vminq_s16(out_s16, max_s16);
    }

    return out_s16;
}

/** Performs final quantization step on single signed 16-bit element
 *
 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
 *
 * @param[in] in_value                     Input to be quantized.
 * @param[in] result_fixedpoint_multiplier Result multiplier parameter
 * @param[in] result_shift                 Result shift parameter
 * @param[in] min_s16                      Relu lower bound
 * @param[in] max_s16                      Relu upper bound
 *
 * @return Quantized values
 */
template <bool is_bounded_relu>
inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier,
                                           int32_t result_shift, int16_t min_s16, int16_t max_s16)
{
    if(result_shift < 0)
    {
        const int64_t in_64 = static_cast<int64_t>(in_value) * (1 << (-result_shift)) * static_cast<int64_t>(result_fixedpoint_multiplier);
        in_value            = static_cast<int32_t>((in_64 + (1 << 30)) >> 31);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        const int64_t in_64 = static_cast<int64_t>(in_value) * static_cast<int64_t>(result_fixedpoint_multiplier);
        // Shift value by result_shift_s32
        in_value = rounding_divide_by_pow2(static_cast<int32_t>((in_64 + (1 << 30)) >> 31), result_shift);
    }

    // Bound the result
    int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));

    if(is_bounded_relu)
    {
        out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
    }

    return out_s16;
}

/** Dequantize a neon vector holding 8 16-bit quantized values.
 *
 * @param[in] qv    Input values to be dequantized.
 * @param[in] scale Quantization scale
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
{
    const float32x4_t   vscale = vdupq_n_f32(scale);
    const float32x4x2_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)
        }
    };
    return vdequantized_input;
}

/** Quantize a neon vector holding 8 floating point values.
 *
 * @param[in] qv    Input values to be quantized.
 * @param[in] scale Quantization scale
 *
 * @return A neon vector holding the quantized values
 */
inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
{
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);

    const int32x4x2_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#else  //__aarch64__
            vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#endif //__aarch64__
        }
    };
    return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
}

/** Dequantize a neon vector holding 16 16-bit quantized values.
 *
 * @param[in] qv Input values to be dequantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi)
{
    const float         scale  = qi.scale;
    const float32x4_t   vscale = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale),
        }
    };
    return vdequantized_input;
}

/** Quantize a neon vector holding 16 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the quantized values
 */
inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    const float scale = qi.scale;
    ARM_COMPUTE_ERROR_ON(scale == 0.f);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
            vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
            vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
            vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
            vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#endif //__aarch64__
        }
    };
    const qsymm16x8x2_t res =
    {
        vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])),
        vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])),
    };

    return res;
}

} // namespace arm_compute
#endif // ARM_COMPUTE_NESYMM_H