aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NEMath.inl
blob: eebcdf864f75efe2b65f2e613b34f0676b49daf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * Copyright (c) 2016-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <cmath>

namespace arm_compute
{
/** Exponent polynomial coefficients */
const std::array<float32x4_t, 8> exp_tab =
{
    {
        vdupq_n_f32(1.f),
        vdupq_n_f32(0.0416598916054f),
        vdupq_n_f32(0.500000596046f),
        vdupq_n_f32(0.0014122662833f),
        vdupq_n_f32(1.00000011921f),
        vdupq_n_f32(0.00833693705499f),
        vdupq_n_f32(0.166665703058f),
        vdupq_n_f32(0.000195780929062f),
    }
};

/** Logarithm polynomial coefficients */
const std::array<float32x4_t, 8> log_tab =
{
    {
        vdupq_n_f32(-2.29561495781f),
        vdupq_n_f32(-2.47071170807f),
        vdupq_n_f32(-5.68692588806f),
        vdupq_n_f32(-0.165253549814f),
        vdupq_n_f32(5.17591238022f),
        vdupq_n_f32(0.844007015228f),
        vdupq_n_f32(4.58445882797f),
        vdupq_n_f32(0.0141278216615f),
    }
};

/** Sin polynomial coefficients */
constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3)
constexpr float te_sin_coeff3 = 0.05f;           // 1/(4*5)
constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7)
constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)

#ifndef DOXYGEN_SKIP_THIS
inline float32x4_t vfloorq_f32(float32x4_t val)
{
    static const float32x4_t CONST_1 = vdupq_n_f32(1.f);

    const int32x4_t   z = vcvtq_s32_f32(val);
    const float32x4_t r = vcvtq_f32_s32(z);

    return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r);
}

inline float32x4_t vroundq_rte_f32(float32x4_t val)
{
#ifdef __aarch64__
    return vrndnq_f32(val);
#else  // __aarch64__
    static const float32x4_t CONST_HALF_FLOAT = vdupq_n_f32(0.5f);
    static const float32x4_t CONST_1_FLOAT    = vdupq_n_f32(1.f);
    static const int32x4_t   CONST_1_INT      = vdupq_n_s32(1);
    const float32x4_t        floor_val        = vfloorq_f32(val);
    const float32x4_t        diff             = vsubq_f32(val, floor_val);

    /*
    * Select the floor value when (diff<0.5 || (diff==0.5 && floor_val%2==0).
    * This condition is checked by vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT) ,vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT) , vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT),CONST_1_INT))))
    */

    return vbslq_f32(vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT), vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT), vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT), CONST_1_INT)))),
                     floor_val, vaddq_f32(floor_val, CONST_1_FLOAT));
#endif // __aarch64__
}

inline float32x2_t vinvsqrt_f32(float32x2_t x)
{
    float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);

    return sqrt_reciprocal;
}

inline float32x4_t vinvsqrtq_f32(float32x4_t x)
{
    float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
    sqrt_reciprocal             = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);

    return sqrt_reciprocal;
}

inline float32x2_t vinv_f32(float32x2_t x)
{
    float32x2_t recip = vrecpe_f32(x);
    recip             = vmul_f32(vrecps_f32(x, recip), recip);
    recip             = vmul_f32(vrecps_f32(x, recip), recip);
    return recip;
}

inline float32x4_t vinvq_f32(float32x4_t x)
{
    float32x4_t recip = vrecpeq_f32(x);
    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
    return recip;
}

inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
{
    float32x4_t A   = vmlaq_f32(coeffs[0], coeffs[4], x);
    float32x4_t B   = vmlaq_f32(coeffs[2], coeffs[6], x);
    float32x4_t C   = vmlaq_f32(coeffs[1], coeffs[5], x);
    float32x4_t D   = vmlaq_f32(coeffs[3], coeffs[7], x);
    float32x4_t x2  = vmulq_f32(x, x);
    float32x4_t x4  = vmulq_f32(x2, x2);
    float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
    return res;
}

inline float32x4_t vexpq_f32(float32x4_t x)
{
    static const float32x4_t CONST_LN2          = vdupq_n_f32(0.6931471805f); // ln(2)
    static const float32x4_t CONST_INV_LN2      = vdupq_n_f32(1.4426950408f); // 1/ln(2)
    static const float32x4_t CONST_0            = vdupq_n_f32(0.f);
    static const int32x4_t   CONST_NEGATIVE_126 = vdupq_n_s32(-126);

    // Perform range reduction [-log(2),log(2)]
    int32x4_t   m   = vcvtq_s32_f32(vmulq_f32(x, CONST_INV_LN2));
    float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), CONST_LN2);

    // Polynomial Approximation
    float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);

    // Reconstruct
    poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
    poly = vbslq_f32(vcltq_s32(m, CONST_NEGATIVE_126), CONST_0, poly);

    return poly;
}

inline float32x4_t vlogq_f32(float32x4_t x)
{
    static const int32x4_t   CONST_127 = vdupq_n_s32(127);           // 127
    static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)

    // Extract exponent
    int32x4_t   m   = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
    float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));

    // Polynomial Approximation
    float32x4_t poly = vtaylor_polyq_f32(val, log_tab);

    // Reconstruct
    poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);

    return poly;
}

inline float32x4_t vtanhq_f32(float32x4_t val)
{
    static const float32x4_t CONST_1        = vdupq_n_f32(1.f);
    static const float32x4_t CONST_2        = vdupq_n_f32(2.f);
    static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
    static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);

    float32x4_t x     = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
    float32x4_t exp2x = vexpq_f32(vmulq_f32(CONST_2, x));
    float32x4_t num   = vsubq_f32(exp2x, CONST_1);
    float32x4_t den   = vaddq_f32(exp2x, CONST_1);
    float32x4_t tanh  = vmulq_f32(num, vinvq_f32(den));
    return tanh;
}

inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
{
    return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
}

inline float32x4_t vsinq_f32(float32x4_t val)
{
    const float32x4_t pi_v   = vdupq_n_f32(M_PI);
    const float32x4_t pio2_v = vdupq_n_f32(M_PI / 2);
    const float32x4_t ipi_v  = vdupq_n_f32(1 / M_PI);

    //Find positive or negative
    const int32x4_t  c_v    = vabsq_s32(vcvtq_s32_f32(vmulq_f32(val, ipi_v)));
    const uint32x4_t sign_v = vcleq_f32(val, vdupq_n_f32(0));
    const uint32x4_t odd_v  = vandq_u32(vreinterpretq_u32_s32(c_v), vdupq_n_u32(1));

    uint32x4_t neg_v = veorq_u32(odd_v, sign_v);

    //Modulus a - (n * int(a*(1/n)))
    float32x4_t      ma    = vsubq_f32(vabsq_f32(val), vmulq_f32(pi_v, vcvtq_f32_s32(c_v)));
    const uint32x4_t reb_v = vcgeq_f32(ma, pio2_v);

    //Rebase a between 0 and pi/2
    ma = vbslq_f32(reb_v, vsubq_f32(pi_v, ma), ma);

    //Taylor series
    const float32x4_t ma2 = vmulq_f32(ma, ma);

    //2nd elem: x^3 / 3!
    float32x4_t elem = vmulq_f32(vmulq_f32(ma, ma2), vdupq_n_f32(te_sin_coeff2));
    float32x4_t res  = vsubq_f32(ma, elem);

    //3rd elem: x^5 / 5!
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff3));
    res  = vaddq_f32(res, elem);

    //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff4));
    res  = vsubq_f32(res, elem);

    //5th elem: x^9 / 9!
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff5));
    res  = vaddq_f32(res, elem);

    //Change of sign
    neg_v = vshlq_n_u32(neg_v, 31);
    res   = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(res), neg_v));
    return res;
}

inline float32x2_t vsin_f32(float32x2_t val)
{
    const float32x2_t pi_v   = vdup_n_f32(M_PI);
    const float32x2_t pio2_v = vdup_n_f32(M_PI / 2);
    const float32x2_t ipi_v  = vdup_n_f32(1 / M_PI);

    //Find positive or negative
    const int32x2_t  c_v    = vabs_s32(vcvt_s32_f32(vmul_f32(val, ipi_v)));
    const uint32x2_t sign_v = vcle_f32(val, vdup_n_f32(0));
    const uint32x2_t odd_v  = vand_u32(vreinterpret_u32_s32(c_v), vdup_n_u32(1));

    uint32x2_t neg_v = veor_u32(odd_v, sign_v);

    //Modulus a - (n * int(a*(1/n)))
    float32x2_t      ma    = vsub_f32(vabs_f32(val), vmul_f32(pi_v, vcvt_f32_s32(c_v)));
    const uint32x2_t reb_v = vcge_f32(ma, pio2_v);

    //Rebase a between 0 and pi/2
    ma = vbsl_f32(reb_v, vsub_f32(pi_v, ma), ma);

    //Taylor series
    const float32x2_t ma2 = vmul_f32(ma, ma);

    //2nd elem: x^3 / 3!
    float32x2_t elem = vmul_f32(vmul_f32(ma, ma2), vdup_n_f32(te_sin_coeff2));
    float32x2_t res  = vsub_f32(ma, elem);

    //3rd elem: x^5 / 5!
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff3));
    res  = vadd_f32(res, elem);

    //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff4));
    res  = vsub_f32(res, elem);

    //5th elem: x^9 / 9!
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff5));
    res  = vadd_f32(res, elem);

    //Change of sign
    neg_v = vshl_n_u32(neg_v, 31);
    res   = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(res), neg_v));
    return res;
}

#endif /* DOXYGEN_SKIP_THIS */

inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent)
{
    const int32x4_t shift_vec  = vdupq_n_s32(-exponent);
    const int32x4_t fixup      = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
    const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
    return vrshlq_s32(fixed_up_x, shift_vec);
}

inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
    const int32_t mask      = (1 << exponent) - 1;
    const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
    return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Exponent polynomial coefficients */
/** Logarithm polynomial coefficients */
#ifndef DOXYGEN_SKIP_THIS
inline float16x8_t vfloorq_f16(float16x8_t val)
{
    static const float16x8_t CONST_1 = vdupq_n_f16(1.f);

    const int16x8_t   z = vcvtq_s16_f16(val);
    const float16x8_t r = vcvtq_f16_s16(z);

    return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r);
}

inline float16x8_t vroundq_rte_f16(float16x8_t val)
{
    return vrndnq_f16(val);
}

inline float16x4_t vinvsqrt_f16(float16x4_t x)
{
    float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    return sqrt_reciprocal;
}

inline float16x8_t vinvsqrtq_f16(float16x8_t x)
{
    float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
    sqrt_reciprocal             = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    return sqrt_reciprocal;
}

inline float16x4_t vinv_f16(float16x4_t x)
{
    float16x4_t recip = vrecpe_f16(x);
    recip             = vmul_f16(vrecps_f16(x, recip), recip);
    recip             = vmul_f16(vrecps_f16(x, recip), recip);
    return recip;
}

inline float16x8_t vinvq_f16(float16x8_t x)
{
    float16x8_t recip = vrecpeq_f16(x);
    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);
    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);
    return recip;
}

inline float16x8_t vtanhq_f16(float16x8_t val)
{
    const float16x8_t CONST_1        = vdupq_n_f16(1.f);
    const float16x8_t CONST_2        = vdupq_n_f16(2.f);
    const float16x8_t CONST_MIN_TANH = vdupq_n_f16(-10.f);
    const float16x8_t CONST_MAX_TANH = vdupq_n_f16(10.f);

    const float16x8_t x     = vminq_f16(vmaxq_f16(val, CONST_MIN_TANH), CONST_MAX_TANH);
    const float16x8_t exp2x = vexpq_f16(vmulq_f16(CONST_2, x));
    const float16x8_t num   = vsubq_f16(exp2x, CONST_1);
    const float16x8_t den   = vaddq_f16(exp2x, CONST_1);
    const float16x8_t tanh  = vmulq_f16(num, vinvq_f16(den));
    return tanh;
}

inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
{
    const float16x8_t A   = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
    const float16x8_t B   = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
    const float16x8_t C   = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
    const float16x8_t D   = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
    const float16x8_t x2  = vmulq_f16(x, x);
    const float16x8_t x4  = vmulq_f16(x2, x2);
    const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
    return res;
}

inline float16x8_t vexpq_f16(float16x8_t x)
{
    // TODO (COMPMID-1535) : Revisit FP16 approximations
    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));

    const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high));
    return res;
}

inline float16x8_t vlogq_f16(float16x8_t x)
{
    // TODO (COMPMID-1535) : Revisit FP16 approximations
    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));

    const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high));
    return res;
}

inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
{
    // TODO (giaiod01) - COMPMID-1535
    float32x4_t n0_f32   = vcvt_f32_f16(vget_low_f16(n));
    float32x4_t n1_f32   = vcvt_f32_f16(vget_high_f16(n));
    float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
    float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));

    float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
    float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));

    return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
}

inline float16x8_t vsinq_f16(float16x8_t val)
{
    const float32x4_t val_high = vcvt_f32_f16(vget_high_f16(val));
    const float32x4_t val_low  = vcvt_f32_f16(vget_low_f16(val));

    const float32x4_t res_high = vsinq_f32(val_high);
    const float32x4_t res_low  = vsinq_f32(val_low);

    return vcombine_f16(vcvt_f16_f32(res_low), vcvt_f16_f32(res_high));
}

inline float16x4_t vsin_f16(float16x4_t val)
{
    const float32x4_t val_f32  = vcvt_f32_f16(val);
    const float32x2_t val_high = vget_high_f32(val_f32);
    const float32x2_t val_low  = vget_low_f32(val_f32);

    const float32x2_t res_high = vsin_f32(val_high);
    const float32x2_t res_low  = vsin_f32(val_low);

    return vcvt_f16_f32(vcombine_f32(res_low, res_high));
}

#endif /* DOXYGEN_SKIP_THIS */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
} // namespace arm_compute