/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Utils.h" #ifdef ARM_COMPUTE_CL #include "arm_compute/runtime/CL/CLScheduler.h" #endif /* ARM_COMPUTE_CL */ #include #include #include #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wswitch-default" #define STB_IMAGE_IMPLEMENTATION #include "stb/stb_image.h" #pragma GCC diagnostic pop namespace arm_compute { namespace utils { namespace { /* Advance the iterator to the first character which is not a comment * * @param[in,out] fs Stream to drop comments from */ void discard_comments(std::ifstream &fs) { while(fs.peek() == '#') { fs.ignore(std::numeric_limits::max(), '\n'); } } /* Advance the string iterator to the next character which is neither a space or a comment * * @param[in,out] fs Stream to drop comments from */ void discard_comments_and_spaces(std::ifstream &fs) { while(true) { discard_comments(fs); if(isspace(fs.peek()) == 0) { break; } fs.ignore(1); } } } // namespace #ifndef BENCHMARK_EXAMPLES int run_example(int argc, char **argv, std::unique_ptr example) { std::cout << "\n" << argv[0] << "\n\n"; try { bool status = example->do_setup(argc, argv); if(!status) { return 1; } example->do_run(); example->do_teardown(); std::cout << "\nTest passed\n"; return 0; } #ifdef ARM_COMPUTE_CL catch(cl::Error &err) { std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl; std::cerr << std::endl << "ERROR " << err.what() << "(" << err.err() << ")" << std::endl; std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl; } #endif /* ARM_COMPUTE_CL */ catch(std::runtime_error &err) { std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl; std::cerr << std::endl << "ERROR " << err.what() << " " << (errno ? strerror(errno) : "") << std::endl; std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl; } std::cout << "\nTest FAILED\n"; return -1; } #endif /* BENCHMARK_EXAMPLES */ void draw_detection_rectangle(ITensor *tensor, const DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b) { ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(tensor, Format::RGB888); uint8_t *top = tensor->info()->offset_element_in_bytes(Coordinates(rect.x, rect.y)) + tensor->buffer(); uint8_t *bottom = tensor->info()->offset_element_in_bytes(Coordinates(rect.x, rect.y + rect.height)) + tensor->buffer(); uint8_t *left = top; uint8_t *right = tensor->info()->offset_element_in_bytes(Coordinates(rect.x + rect.width, rect.y)) + tensor->buffer(); size_t stride = tensor->info()->strides_in_bytes()[Window::DimY]; for(size_t x = 0; x < rect.width; ++x) { top[0] = r; top[1] = g; top[2] = b; bottom[0] = r; bottom[1] = g; bottom[2] = b; top += 3; bottom += 3; } for(size_t y = 0; y < rect.height; ++y) { left[0] = r; left[1] = g; left[2] = b; right[0] = r; right[1] = g; right[2] = b; left += stride; right += stride; } } ImageType get_image_type_from_file(const std::string &filename) { ImageType type = ImageType::UNKNOWN; try { // Open file std::ifstream fs; fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); fs.open(filename, std::ios::in | std::ios::binary); // Identify type from magic number std::array magic_number{ { 0 } }; fs >> magic_number[0] >> magic_number[1]; // PPM check if(static_cast(magic_number[0]) == 'P' && static_cast(magic_number[1]) == '6') { type = ImageType::PPM; } else if(magic_number[0] == 0xFF && magic_number[1] == 0xD8) { type = ImageType::JPEG; } fs.close(); } catch(std::runtime_error &e) { ARM_COMPUTE_ERROR("Accessing %s: %s", filename.c_str(), e.what()); } return type; } std::tuple parse_ppm_header(std::ifstream &fs) { // Check the PPM magic number is valid std::array magic_number{ { 0 } }; fs >> magic_number[0] >> magic_number[1]; ARM_COMPUTE_ERROR_ON_MSG(magic_number[0] != 'P' || magic_number[1] != '6', "Invalid file type"); ARM_COMPUTE_UNUSED(magic_number); discard_comments_and_spaces(fs); unsigned int width = 0; fs >> width; discard_comments_and_spaces(fs); unsigned int height = 0; fs >> height; discard_comments_and_spaces(fs); int max_val = 0; fs >> max_val; discard_comments(fs); ARM_COMPUTE_ERROR_ON_MSG(isspace(fs.peek()) == 0, "Invalid PPM header"); fs.ignore(1); return std::make_tuple(width, height, max_val); } std::tuple, bool, std::string> parse_npy_header(std::ifstream &fs) //NOLINT { std::vector shape; // NOLINT // Read header std::string header = npy::read_header(fs); // Parse header bool fortran_order = false; std::string typestr; npy::parse_header(header, typestr, fortran_order, shape); std::reverse(shape.begin(), shape.end()); return std::make_tuple(shape, fortran_order, typestr); } /** This function returns the amount of memory free reading from /proc/meminfo * * @return The free memory in kB */ uint64_t get_mem_free_from_meminfo() { std::string line_attribute; std::ifstream file_meminfo("/proc/meminfo"); if(file_meminfo.is_open()) { while(!(file_meminfo >> line_attribute).fail()) { //Test if is the line containing MemFree if(line_attribute == "MemFree:") { uint64_t mem_available; if(!(file_meminfo >> mem_available).fail()) { return mem_available; } else { return 0; } } // if it's not MemFree ignore rest of the line file_meminfo.ignore(std::numeric_limits::max(), '\n'); } } // Nothing found or an error during opening the file return 0; } /** This function loads prebuilt opencl kernels from a file * * @param[in] filename Name of the file to be used to load the kernels */ void restore_program_cache_from_file(const std::string &filename) { #ifdef ARM_COMPUTE_CL std::ifstream cache_file(filename, std::ios::binary); if(cache_file.is_open()) { if(!CLScheduler::get().is_initialised()) { arm_compute::CLScheduler::get().default_init(); } while(!cache_file.eof()) { size_t name_len = 0; size_t binary_len = 0; cache_file.read(reinterpret_cast(&name_len), sizeof(size_t)); cache_file.read(reinterpret_cast(&binary_len), sizeof(size_t)); if(name_len == 0 || binary_len == 0) { break; } std::vector tmp(name_len); std::vector binary(binary_len); std::string name; cache_file.read(tmp.data(), name_len); name.assign(tmp.data(), name_len); tmp.resize(binary_len); cache_file.read(reinterpret_cast(binary.data()), binary_len); cl::Context context = arm_compute::CLScheduler::get().context(); cl::Program::Binaries binaries{ binary }; std::vector devices = context.getInfo(); cl::Program program(context, devices, binaries); program.build(); CLKernelLibrary::get().add_built_program(name, program); } cache_file.close(); } #endif /* ARM_COMPUTE_CL */ } /** This function saves opencl kernels library to a file * * @param[in] filename Name of the file to be used to save the library */ void save_program_cache_to_file(const std::string &filename) { #ifdef ARM_COMPUTE_CL if(CLScheduler::get().is_initialised()) { std::ofstream cache_file(filename, std::ios::binary); if(cache_file.is_open()) { for(const auto &it : CLKernelLibrary::get().get_built_programs()) { std::vector> binaries = it.second.getInfo(); ARM_COMPUTE_ERROR_ON(binaries.size() != 1); const std::string kernel_name = it.first; size_t kernel_name_size = kernel_name.length(); size_t binary_size = binaries[0].size(); cache_file.write(reinterpret_cast(&kernel_name_size), sizeof(size_t)); cache_file.write(reinterpret_cast(&binary_size), sizeof(size_t)); cache_file.write(kernel_name.c_str(), kernel_name_size); cache_file.write(reinterpret_cast(binaries[0].data()), binaries[0].size()); } cache_file.close(); } else { ARM_COMPUTE_ERROR("Cannot open cache file"); } } #endif /* ARM_COMPUTE_CL */ } } // namespace utils } // namespace arm_compute