/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "utils/GraphUtils.h" #include "utils/Utils.h" #ifdef ARM_COMPUTE_CL #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/runtime/CL/CLTensor.h" #endif /* ARM_COMPUTE_CL */ #include using namespace arm_compute::graph_utils; PPMWriter::PPMWriter(std::string name, unsigned int maximum) : _name(std::move(name)), _iterator(0), _maximum(maximum) { } bool PPMWriter::access_tensor(ITensor &tensor) { std::stringstream ss; ss << _name << _iterator << ".ppm"; arm_compute::utils::save_to_ppm(tensor, ss.str()); _iterator++; if(_maximum == 0) { return true; } return _iterator < _maximum; } DummyAccessor::DummyAccessor(unsigned int maximum) : _iterator(0), _maximum(maximum) { } bool DummyAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_UNUSED(tensor); bool ret = _maximum == 0 || _iterator < _maximum; if(_iterator == _maximum) { _iterator = 0; } else { _iterator++; } return ret; } PPMAccessor::PPMAccessor(std::string ppm_path, bool bgr, float mean_r, float mean_g, float mean_b, float std_r, float std_g, float std_b) : _ppm_path(std::move(ppm_path)), _bgr(bgr), _mean_r(mean_r), _mean_g(mean_g), _mean_b(mean_b), _std_r(std_r), _std_g(std_g), _std_b(std_b) { } bool PPMAccessor::access_tensor(ITensor &tensor) { utils::PPMLoader ppm; const float mean[3] = { _bgr ? _mean_b : _mean_r, _mean_g, _bgr ? _mean_r : _mean_b }; const float std[3] = { _bgr ? _std_b : _std_r, _std_g, _bgr ? _std_r : _std_b }; // Open PPM file ppm.open(_ppm_path); ARM_COMPUTE_ERROR_ON_MSG(ppm.width() != tensor.info()->dimension(0) || ppm.height() != tensor.info()->dimension(1), "Failed to load image file: dimensions [%d,%d] not correct, expected [%d,%d].", ppm.width(), ppm.height(), tensor.info()->dimension(0), tensor.info()->dimension(1)); // Fill the tensor with the PPM content (BGR) ppm.fill_planar_tensor(tensor, _bgr); // Subtract the mean value from each channel Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); execute_window_loop(window, [&](const Coordinates & id) { const float value = *reinterpret_cast(tensor.ptr_to_element(id)) - mean[id.z()]; *reinterpret_cast(tensor.ptr_to_element(id)) = value / std[id.z()]; }); return true; } TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream) : _labels(), _output_stream(output_stream), _top_n(top_n) { _labels.clear(); std::ifstream ifs; try { ifs.exceptions(std::ifstream::badbit); ifs.open(labels_path, std::ios::in | std::ios::binary); for(std::string line; !std::getline(ifs, line).fail();) { _labels.emplace_back(line); } } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Accessing %s: %s", labels_path.c_str(), e.what()); } } template void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor) { // Get the predicted class std::vector classes_prob; std::vector index; const auto output_net = reinterpret_cast(tensor.buffer() + tensor.info()->offset_first_element_in_bytes()); const size_t num_classes = tensor.info()->dimension(0); classes_prob.resize(num_classes); index.resize(num_classes); std::copy(output_net, output_net + num_classes, classes_prob.begin()); // Sort results std::iota(std::begin(index), std::end(index), static_cast(0)); std::sort(std::begin(index), std::end(index), [&](size_t a, size_t b) { return classes_prob[a] > classes_prob[b]; }); _output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl << std::endl; for(size_t i = 0; i < _top_n; ++i) { _output_stream << std::fixed << std::setprecision(4) << +classes_prob[index.at(i)] << " - [id = " << index.at(i) << "]" << ", " << _labels[index.at(i)] << std::endl; } } bool TopNPredictionsAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8); ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0)); switch(tensor.info()->data_type()) { case DataType::QASYMM8: access_predictions_tensor(tensor); break; case DataType::F32: access_predictions_tensor(tensor); break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return false; } RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed) : _lower(lower), _upper(upper), _seed(seed) { } template void RandomAccessor::fill(ITensor &tensor, D &&distribution) { std::mt19937 gen(_seed); if(tensor.info()->padding().empty()) { for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size()) { const T value = distribution(gen); *reinterpret_cast(tensor.buffer() + offset) = value; } } else { // If tensor has padding accessing tensor elements through execution window. Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); execute_window_loop(window, [&](const Coordinates & id) { const T value = distribution(gen); *reinterpret_cast(tensor.ptr_to_element(id)) = value; }); } } bool RandomAccessor::access_tensor(ITensor &tensor) { switch(tensor.info()->data_type()) { case DataType::U8: { std::uniform_int_distribution distribution_u8(_lower.get(), _upper.get()); fill(tensor, distribution_u8); break; } case DataType::S8: case DataType::QS8: { std::uniform_int_distribution distribution_s8(_lower.get(), _upper.get()); fill(tensor, distribution_s8); break; } case DataType::U16: { std::uniform_int_distribution distribution_u16(_lower.get(), _upper.get()); fill(tensor, distribution_u16); break; } case DataType::S16: case DataType::QS16: { std::uniform_int_distribution distribution_s16(_lower.get(), _upper.get()); fill(tensor, distribution_s16); break; } case DataType::U32: { std::uniform_int_distribution distribution_u32(_lower.get(), _upper.get()); fill(tensor, distribution_u32); break; } case DataType::S32: { std::uniform_int_distribution distribution_s32(_lower.get(), _upper.get()); fill(tensor, distribution_s32); break; } case DataType::U64: { std::uniform_int_distribution distribution_u64(_lower.get(), _upper.get()); fill(tensor, distribution_u64); break; } case DataType::S64: { std::uniform_int_distribution distribution_s64(_lower.get(), _upper.get()); fill(tensor, distribution_s64); break; } case DataType::F16: { std::uniform_real_distribution distribution_f16(_lower.get(), _upper.get()); fill(tensor, distribution_f16); break; } case DataType::F32: { std::uniform_real_distribution distribution_f32(_lower.get(), _upper.get()); fill(tensor, distribution_f32); break; } case DataType::F64: { std::uniform_real_distribution distribution_f64(_lower.get(), _upper.get()); fill(tensor, distribution_f64); break; } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return true; } NumPyBinLoader::NumPyBinLoader(std::string filename) : _filename(std::move(filename)) { } bool NumPyBinLoader::access_tensor(ITensor &tensor) { const TensorShape tensor_shape = tensor.info()->tensor_shape(); std::vector shape; // Open file std::ifstream stream(_filename, std::ios::in | std::ios::binary); ARM_COMPUTE_ERROR_ON_MSG(!stream.good(), "Failed to load binary data"); std::string header = npy::read_header(stream); // Parse header bool fortran_order = false; std::string typestr; npy::parse_header(header, typestr, fortran_order, shape); // Check if the typestring matches the given one std::string expect_typestr = arm_compute::utils::get_typestring(tensor.info()->data_type()); ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch"); // Reverse vector in case of non fortran order if(!fortran_order) { std::reverse(shape.begin(), shape.end()); } // Correct dimensions (Needs to match TensorShape dimension corrections) if(shape.size() != tensor_shape.num_dimensions()) { for(int i = static_cast(shape.size()) - 1; i > 0; --i) { if(shape[i] == 1) { shape.pop_back(); } else { break; } } } // Validate tensor ranks ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor_shape.num_dimensions(), "Tensor ranks mismatch"); // Validate shapes for(size_t i = 0; i < shape.size(); ++i) { ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[i], "Tensor dimensions mismatch"); } // Read data if(tensor.info()->padding().empty()) { // If tensor has no padding read directly from stream. stream.read(reinterpret_cast(tensor.buffer()), tensor.info()->total_size()); } else { // If tensor has padding accessing tensor elements through execution window. Window window; window.use_tensor_dimensions(tensor_shape); execute_window_loop(window, [&](const Coordinates & id) { stream.read(reinterpret_cast(tensor.ptr_to_element(id)), tensor.info()->element_size()); }); } return true; }