/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ReferenceCPP.h" #include "TensorFactory.h" #include "TensorOperations.h" #include "TensorVisitors.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/runtime/Tensor.h" #include "utils/TypePrinter.h" #include "tests/validation_old/boost_wrapper.h" #include #include #include #include #include using namespace arm_compute::test::validation::tensor_visitors; namespace arm_compute { namespace test { namespace validation { // Sobel 3x3 void ReferenceCPP::sobel_3x3(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16); Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast(dst_x.data())); Tensor dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast(dst_y.data())); tensor_operations::sobel_3x3(s, dx, dy, border_mode, constant_border_value); } // Sobel 5x5 void ReferenceCPP::sobel_5x5(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16); Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast(dst_x.data())); Tensor dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast(dst_y.data())); tensor_operations::sobel_5x5(s, dx, dy, border_mode, constant_border_value); } // Harris corners void ReferenceCPP::harris_corners(RawTensor &src, RawTensor &Gx, RawTensor &Gy, const RawTensor &candidates, const RawTensor &non_maxima, float threshold, float min_dist, float sensitivity, int32_t gradient_size, int32_t block_size, KeyPointArray &corners, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || (Gx.data_type() != DataType::S16 && Gx.data_type() != DataType::S32) || (Gy.data_type() != DataType::S16 && Gy.data_type() != DataType::S32) || candidates.data_type() != DataType::F32 || non_maxima.data_type() != DataType::F32); Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor c(candidates.shape(), candidates.data_type(), candidates.fixed_point_position(), const_cast(reinterpret_cast(candidates.data()))); // NOLINT Tensor nm(non_maxima.shape(), non_maxima.data_type(), non_maxima.fixed_point_position(), const_cast(reinterpret_cast(non_maxima.data()))); // NOLINT if(gradient_size == 7) { Tensor gx(Gx.shape(), Gx.data_type(), Gx.fixed_point_position(), reinterpret_cast(Gx.data())); Tensor gy(Gy.shape(), Gy.data_type(), Gy.fixed_point_position(), reinterpret_cast(Gy.data())); tensor_operations::harris_corners(s, gx, gy, c, nm, threshold, min_dist, sensitivity, gradient_size, block_size, corners, border_mode, constant_border_value); } else { Tensor gx(Gx.shape(), Gx.data_type(), Gx.fixed_point_position(), reinterpret_cast(Gx.data())); Tensor gy(Gy.shape(), Gy.data_type(), Gy.fixed_point_position(), reinterpret_cast(Gy.data())); tensor_operations::harris_corners(s, gx, gy, c, nm, threshold, min_dist, sensitivity, gradient_size, block_size, corners, border_mode, constant_border_value); } } // Absolute difference void ReferenceCPP::absolute_difference(const RawTensor &src1, const RawTensor &src2, RawTensor &dst) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(absolute_difference_visitor(), s1, s2, d); } // Integral image void ReferenceCPP::integral_image(const RawTensor &src, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U32); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::integral_image(s, d); } // Accumulate void ReferenceCPP::accumulate(const RawTensor &src, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate(s, d); } // Accumulate squared void ReferenceCPP::accumulate_squared(const RawTensor &src, RawTensor &dst, uint32_t shift) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate_squared(s, d, shift); } // Accumulate weighted void ReferenceCPP::accumulate_weighted(const RawTensor &src, RawTensor &dst, float alpha) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate_weighted(s, d, alpha); } // Gaussian3x3 filter void ReferenceCPP::gaussian3x3(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::gaussian3x3(s, d, border_mode, constant_border_value); } // Gaussian5x5 filter void ReferenceCPP::gaussian5x5(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::gaussian5x5(s, d, border_mode, constant_border_value); } // Non linear filter void ReferenceCPP::non_linear_filter(const RawTensor &src, RawTensor &dst, NonLinearFilterFunction function, unsigned int mask_size, MatrixPattern pattern, const uint8_t *mask, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::non_linear_filter(s, d, function, mask_size, pattern, mask, border_mode, constant_border_value); } // Pixel-wise multiplication void ReferenceCPP::pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(pixel_wise_multiplication_visitor(scale, convert_policy, rounding_policy), s1, s2, d); } // Fixed-point Pixel-wise multiplication void ReferenceCPP::fixed_point_pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::fixed_point_pixel_wise_multiplication_visitor(s1, s2, scale, convert_policy, rounding_policy), d); } // Threshold void ReferenceCPP::threshold(const RawTensor &src, RawTensor &dst, uint8_t threshold, uint8_t false_value, uint8_t true_value, ThresholdType type, uint8_t upper) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::threshold(s, d, threshold, false_value, true_value, type, upper); } // Warp perspective void ReferenceCPP::warp_perspective(const RawTensor &src, RawTensor &dst, RawTensor &valid_mask, const float *matrix, InterpolationPolicy policy, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); Tensor vmask(valid_mask.shape(), valid_mask.data_type(), valid_mask.fixed_point_position(), reinterpret_cast(valid_mask.data())); tensor_operations::warp_perspective(s, d, vmask, matrix, policy, border_mode, constant_border_value); } // ROI Pooling Layer void ReferenceCPP::roi_pooling_layer(const RawTensor &src, RawTensor &dst, const std::vector &rois, const ROIPoolingLayerInfo &pool_info) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::roi_pooling_layer_visitor(s, rois, pool_info), d); } // Fixed point operation void ReferenceCPP::fixed_point_operation(const RawTensor &src, RawTensor &dst, FixedPointOp op) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::fixed_point_operation_visitor(s, op), d); } } // namespace validation } // namespace test } // namespace arm_compute