/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Winograd.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/Utils.h" #include "arm_compute/core/Types.h" #include #include namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { template void initialize_matrix_transform(SimpleTensor &src, const Size2D &output_tile_size, const Size2D &kernel_size, WinogradTransformType winograd_transform_type) { // Winograd input transform matrices static const float imatrix2x2_3x3[] = { 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f }; static const float imatrix4x4_3x3[] = { 4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f, 0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f, 0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f, 0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f, 0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f, 0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f, }; static const float imatrix4x4_5x5[] = { 1.f, 0.f, -21.f / 4.f, 0.f, 21.f / 4.f, 0.f, -1.f, 0.f, 0.f, 1.f, 1.f, -17.f / 4.f, -17.f / 4.f, 1.f, 1.f, 0.f, 0.f, -1.f, 1.f, 17.f / 4.f, -17.f / 4.f, -1.f, 1.f, 0.f, 0.f, 1.f / 2.f, 1.f / 4.f, -5.f / 2.f, -5.f / 4.f, 2.f, 1.f, 0.f, 0.f, -1.f / 2.f, 1.f / 4.f, 5.f / 2.f, -5.f / 4.f, -2.f, 1.f, 0.f, 0.f, 2.f, 4.f, -5.f / 2.f, -5.f, 1.f / 2.f, 1.f, 0.f, 0.f, -2.f, 4.f, 5.f / 2.f, -5.f, -1.f / 2.f, 1.f, 0.f, 0.f, -1.f, 0.f, 21.f / 4.f, 0.f, -21.f / 4.f, 0.f, 1.f }; static const float imatrix2x1_7x7[] = { -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f, 0.0f, 0.0f, -36.0f, 36.0f, 13.0f, -13.0f, -1.0f, 1.0f, 0.0f, 0.0f, 36.0f, 36.0f, -13.0f, -13.0f, 1.0f, 1.0f, 0.0f, 0.0f, -18.0f, 9.0f, 20.0f, -10.0f, -2.0f, 1.0f, 0.0f, 0.0f, 18.0f, 9.0f, -20.0f, -10.0f, 2.0f, 1.0f, 0.0f, 0.0f, -12.0f, 4.0f, 15.0f, -5.0f, -3.0f, 1.0f, 0.0f, 0.0f, 12.0f, 4.0f, -15.0f, -5.0f, 3.0f, 1.0f, 0.0f, 0.0f, -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f }; // ------------------------------------------ // Winograd filter transform matrices static const float fmatrix2x2_3x3[] = { 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f }; static const float fmatrix4x4_3x3[] = { 0.25f, 0.0f, 0.0f, -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f, 1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f, 1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f, 0.0f, 0.0f, 1.0f }; static const float fmatrix4x4_5x5[] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 1.0f / 90.0f, 1.0f / 45.0f, 2.0f / 45.0f, 4.0f / 45.0f, 8.0f / 45.0f, 1.0f / 90.0f, -1.0f / 45.0f, 2.0f / 45.0f, -4.0f / 45.0f, 8.0f / 45.0f, 4.0f / 45.0f, 2.0f / 45.0f, 1.0f / 45.0f, 1.0f / 90.0f, 1.0f / 180.0f, 4.0f / 45.0f, -2.0f / 45.0f, 1.0f / 45.0f, -1.0f / 90.0f, 1.0f / 180.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; static const float fmatrix2x1_7x7[] = { -1.0f / 36.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 120.0f, 1.0f / 60.0f, -1.0f / 30.0f, 1.0f / 15.0f, -2.0f / 15.0f, 4.0f / 15.0f, -8.0f / 15.0f, -1.0f / 120.0f, -1.0f / 60.0f, -1.0f / 30.0f, -1.0f / 15.0f, -2.0f / 15.0f, -4.0f / 15.0f, -8.0f / 15.0f, 1.0f / 720.0f, -1.0f / 240.0f, 1.0f / 80.0f, -3.0f / 80.0f, 9.0f / 80.0f, -27.0f / 80.0f, 81.0f / 80.0f, 1.0f / 720.0f, 1.0f / 240.0f, 1.0f / 80.0f, 3.0f / 80.0f, 9.0f / 80.0f, 27.0f / 80.0f, 81.0f / 80.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; // ------------------------------------------ // Winograd output transform matrices static const float omatrix2x2_3x3[] = { 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f }; static const float omatrix4x4_3x3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f, 0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f, 0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f }; static const float omatrix4x4_5x5[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 8.0f, 8.0f, 0.0f, 0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f, -4.0f, 0.0f, 0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 2.0f, 2.0f, 0.0f, 0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f, -1.0f, 1.0f }; static const float omatrix2x1_7x7[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, 1.0f, -2.0f, 2.0f, -3.0f, 3.0f, 1.0f }; // ------------------------------------------ using WinogradKey = std::tuple, std::pair, WinogradTransformType>; // Key = (Output tile size, Kernel size, Winograd transform type) static std::map matrix_map = { { WinogradKey(std::pair(2, 2), std::pair(3, 3), WinogradTransformType::INPUT), imatrix2x2_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(3, 3), WinogradTransformType::INPUT), imatrix4x4_3x3 }, { WinogradKey(std::pair(2, 1), std::pair(3, 1), WinogradTransformType::INPUT), imatrix2x2_3x3 }, { WinogradKey(std::pair(4, 1), std::pair(3, 1), WinogradTransformType::INPUT), imatrix4x4_3x3 }, { WinogradKey(std::pair(1, 2), std::pair(1, 3), WinogradTransformType::INPUT), imatrix2x2_3x3 }, { WinogradKey(std::pair(1, 4), std::pair(1, 3), WinogradTransformType::INPUT), imatrix4x4_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(5, 5), WinogradTransformType::INPUT), imatrix4x4_5x5 }, { WinogradKey(std::pair(4, 1), std::pair(5, 1), WinogradTransformType::INPUT), imatrix4x4_5x5 }, { WinogradKey(std::pair(2, 1), std::pair(7, 1), WinogradTransformType::INPUT), imatrix2x1_7x7 }, { WinogradKey(std::pair(1, 2), std::pair(1, 7), WinogradTransformType::INPUT), imatrix2x1_7x7 }, { WinogradKey(std::pair(2, 2), std::pair(7, 7), WinogradTransformType::INPUT), imatrix2x1_7x7 }, { WinogradKey(std::pair(1, 4), std::pair(1, 5), WinogradTransformType::INPUT), imatrix4x4_5x5 }, { WinogradKey(std::pair(2, 2), std::pair(3, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(3, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3 }, { WinogradKey(std::pair(2, 1), std::pair(3, 1), WinogradTransformType::FILTER), fmatrix2x2_3x3 }, { WinogradKey(std::pair(4, 1), std::pair(3, 1), WinogradTransformType::FILTER), fmatrix4x4_3x3 }, { WinogradKey(std::pair(1, 2), std::pair(1, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3 }, { WinogradKey(std::pair(1, 4), std::pair(1, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(5, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5 }, { WinogradKey(std::pair(4, 1), std::pair(5, 1), WinogradTransformType::FILTER), fmatrix4x4_5x5 }, { WinogradKey(std::pair(2, 1), std::pair(7, 1), WinogradTransformType::FILTER), fmatrix2x1_7x7 }, { WinogradKey(std::pair(1, 2), std::pair(1, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7 }, { WinogradKey(std::pair(2, 2), std::pair(7, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7 }, { WinogradKey(std::pair(1, 4), std::pair(1, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5 }, { WinogradKey(std::pair(2, 2), std::pair(3, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(3, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3 }, { WinogradKey(std::pair(2, 1), std::pair(3, 1), WinogradTransformType::OUTPUT), omatrix2x2_3x3 }, { WinogradKey(std::pair(4, 1), std::pair(3, 1), WinogradTransformType::OUTPUT), omatrix4x4_3x3 }, { WinogradKey(std::pair(1, 2), std::pair(1, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3 }, { WinogradKey(std::pair(1, 4), std::pair(1, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3 }, { WinogradKey(std::pair(4, 4), std::pair(5, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5 }, { WinogradKey(std::pair(4, 1), std::pair(5, 1), WinogradTransformType::OUTPUT), omatrix4x4_5x5 }, { WinogradKey(std::pair(2, 1), std::pair(7, 1), WinogradTransformType::OUTPUT), omatrix2x1_7x7 }, { WinogradKey(std::pair(1, 2), std::pair(1, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7 }, { WinogradKey(std::pair(2, 2), std::pair(7, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7 }, { WinogradKey(std::pair(1, 4), std::pair(1, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5 }, }; // Find transformation matrix std::map::iterator it; it = matrix_map.find(WinogradKey(std::pair(output_tile_size.width, output_tile_size.height), std::pair(kernel_size.width, kernel_size.height), winograd_transform_type)); float const *matrix_values = nullptr; if(it != matrix_map.end()) { // Get matrix pointer matrix_values = it->second; } else { ARM_COMPUTE_ERROR("Winograd configuration not supported"); } // Copy values std::copy(&matrix_values[0], &matrix_values[0] + src.num_elements(), &src[0]); } } // namespace template SimpleTensor winograd_input_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info) { ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NCHW); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; SimpleTensor out{ output_shape, in.data_type() }; // Calculate dimensions for the tile const unsigned int tile_w = output_tile_size.width + kernel_size.width - 1; const unsigned int tile_h = output_tile_size.height + kernel_size.height - 1; // Get the maximum dimension from the tile size const unsigned int tile_max_dim = std::max(tile_w, tile_h); TensorShape tile_dims(tile_max_dim, tile_max_dim); // Simple tensor for the input tile SimpleTensor src_tile{ tile_dims, in.data_type() }; // Simple tensor for the temporary tile SimpleTensor tmp_tile{ tile_dims, in.data_type() }; // Simple tensor for the output tile SimpleTensor dst_tile{ tile_dims, in.data_type() }; // Simple tensor for the transformation matrix SimpleTensor matrix{ tile_dims, in.data_type() }; // Simple tensor for the transformation matrix transposed SimpleTensor matrix_transposed{ tile_dims, in.data_type() }; // Initialize matrix for the input transform initialize_matrix_transform(matrix, output_tile_size, kernel_size, WinogradTransformType::INPUT); // Transpose matrix transpose_matrix(matrix, matrix_transposed); const int in_w = in.shape().x(); const int in_h = in.shape().y(); const int in_d = in.shape().z(); const int out_d = out.shape().z(); const int num_batches = in.shape().total_size() / (in_w * in_h * in_d); const int step_x = output_tile_size.width; const int step_y = output_tile_size.height; // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(in_w, in_h), kernel_size, output_tile_size, conv_info); const int num_tiles_x = num_tiles.width; const int num_tiles_y = num_tiles.height; // In case of 1D convolution, the input tile has to be partially filled with zeros int start_x_zero = 0; int start_y_zero = 0; int end_x_zero = 0; int end_y_zero = 0; if(output_tile_size.width == 1) { start_x_zero = 1; start_y_zero = 0; end_x_zero = tile_max_dim - 1; end_y_zero = tile_max_dim; } else if(output_tile_size.height == 1) { start_x_zero = 0; start_y_zero = 1; end_x_zero = tile_max_dim; end_y_zero = tile_max_dim - 1; } // Set the anchor and shape of the zeros area const Coordinates anchor_zeros(start_x_zero, start_y_zero); const TensorShape shape_zeros(end_x_zero, end_y_zero); // If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step = width of the output tile) const int step_y_transf_tile = kernel_size.width == 1 ? tile_max_dim : 1; ARM_COMPUTE_ERROR_ON((num_tiles_x * num_tiles_y) != static_cast(out.shape().y())); for(int b = 0; b < num_batches; ++b) { for(int z = 0; z < in_d; ++z) { for(int y = 0; y < num_tiles_y; ++y) { for(int x = 0; x < num_tiles_x; ++x) { int xi = x * step_x - conv_info.pad_left(); int yi = y * step_y - conv_info.pad_top(); // Get the tile from the input tensor get_tile(in, src_tile, Coordinates(xi, yi, z, b)); // Fill partially with zeros in case of 1D convolution zeros(src_tile, anchor_zeros, shape_zeros); // Compute the transformation matrix_multiply(matrix, src_tile, tmp_tile); matrix_multiply(tmp_tile, matrix_transposed, dst_tile); // Store the output tile across the channels for(int i = 0; i < out_d; ++i) { int xo = z; int yo = x + y * num_tiles_x; out[coords2index(out.shape(), Coordinates(xo, yo, i, b))] = dst_tile[i * step_y_transf_tile]; } } } } } return out; } template SimpleTensor winograd_filter_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info) { ARM_COMPUTE_ERROR_ON_MSG(in.data_layout() != DataLayout::NCHW, "Only supported NCHW data format"); // Create reference SimpleTensor out{ output_shape, in.data_type(), 1 }; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; // Calculate dimensions for the tile const unsigned int input_tile_w = output_tile_size.width + kernel_size.width - 1; const unsigned int input_tile_h = output_tile_size.height + kernel_size.height - 1; const unsigned int input_tile_area = input_tile_w * input_tile_h; // Get the maximum dimension from the filter size const unsigned int kernel_max_dim = std::max(kernel_size.width, kernel_size.height); // Get the maximum dimension from the input tile const unsigned int input_tile_max_dim = std::max(input_tile_w, input_tile_h); // Simple tensor for the input tile SimpleTensor input_tile{ TensorShape(kernel_max_dim, kernel_max_dim), in.data_type(), 1 }; // Simple tensor for the transformation matrix SimpleTensor trans_matrix{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 }; // Simple tensor for the transformation matrix transpose SimpleTensor trans_matrix_transposed{ TensorShape(input_tile_max_dim, kernel_max_dim), in.data_type(), 1 }; // Simple tensor for the temporary tile SimpleTensor tmp_tile{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 }; // Simple tensor for the output tile SimpleTensor transf_tile{ TensorShape(input_tile_max_dim, input_tile_max_dim), in.data_type(), 1 }; // Initialize matrix for the filter transform initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::FILTER); // Transpose the transformation matrix transpose_matrix(trans_matrix, trans_matrix_transposed); const int num_channels = in.shape()[2]; const int num_filters = in.shape()[3]; const int num_batches = in.shape().total_size() / (kernel_size.area() * num_channels * num_filters); // If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step_y_transf_tile = width of the output tile) const int step_y_transf_tile = kernel_size.width == 1 ? input_tile_max_dim : 1; for(int n = 0; n < num_batches; ++n) { for(int w = 0; w < num_filters; ++w) { for(int z = 0; z < num_channels; ++z) { // Load the tile from the input tensor get_tile(in, input_tile, Coordinates(0, 0, z, w, n)); // First transformation matrix_multiply(trans_matrix, input_tile, tmp_tile); // Second transformation matrix_multiply(tmp_tile, trans_matrix_transposed, transf_tile); // Store the output tile across the channels const int output_offset = w + z * num_filters; // Store the values across the channels for(unsigned int i = 0; i < input_tile_area; ++i) { out[output_offset + i * num_filters * num_channels] = transf_tile[i * step_y_transf_tile]; } } } } return out; } template SimpleTensor winograd_output_transform(const SimpleTensor &in, const SimpleTensor &b, const TensorShape &output_shape, const WinogradInfo &winograd_info) { const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D input_dimensions = winograd_info.input_dimensions; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; // Create reference SimpleTensor out{ output_shape, in.data_type(), 1 }; // Calculate dimensions for the tiles const unsigned int in_tile_w = output_tile_size.width + kernel_size.width - 1; const unsigned int in_tile_h = output_tile_size.height + kernel_size.height - 1; const unsigned int out_tile_w = output_tile_size.width; const unsigned int out_tile_h = output_tile_size.height; ARM_COMPUTE_ERROR_ON(in.shape()[2] != (in_tile_w * in_tile_h)); ARM_COMPUTE_ERROR_ON(in.shape()[0] != out.shape()[get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::CHANNEL)]); // Get the maximum dimension from the tile size const unsigned int in_tile_max_dim = std::max(in_tile_w, in_tile_h); const unsigned int out_tile_max_dim = std::max(output_tile_size.width, output_tile_size.height); // Compute tile dimensions // Input tile dimensions TensorShape in_tile_dims(in_tile_max_dim, in_tile_max_dim); // Output tile dimensions TensorShape out_tile_dims(out_tile_max_dim, out_tile_max_dim); // Transformation matrix dimensions TensorShape tr_tile_dims(in_tile_max_dim, out_tile_max_dim); // Create tensors // Simple tensor for the input tile SimpleTensor input_tile{ in_tile_dims, in.data_type(), 1 }; // Simple tensor for the transformation matrix SimpleTensor trans_matrix{ tr_tile_dims, in.data_type(), 1 }; // Simple tensor for the transformation matrix transpose SimpleTensor trans_matrix_transposed{ TensorShape(tr_tile_dims[1], tr_tile_dims[0]), in.data_type(), 1 }; // Simple tensor for the temporary tile SimpleTensor tmp_tile{ tr_tile_dims, in.data_type(), 1 }; // Simple tensor for the output tile SimpleTensor output_tile{ out_tile_dims, in.data_type(), 1 }; // Initialize matrix for the output transform initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::OUTPUT); // Transpose the transformation matrix transpose_matrix(trans_matrix, trans_matrix_transposed); const int w_in = in.shape()[0]; const int h_in = in.shape()[1]; const int c_in = in.shape()[2]; const int w_out = out.shape()[0]; const int h_out = out.shape()[1]; const int c_out = out.shape()[2]; const int num_batches = in.shape().total_size() / (w_in * h_in * c_in); // Input strides const int stridey_in = w_in; const int stridez_in = stridey_in * h_in; const int stridew_in = stridez_in * c_in; // Output strides const int stridey_out = w_out; const int stridez_out = stridey_out * h_out; const int stridew_out = stridez_out * c_out; // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input_dimensions.width, input_dimensions.height), kernel_size, output_tile_size, conv_info); const int num_tiles_x = num_tiles.width; const int num_tiles_y = num_tiles.height; ARM_COMPUTE_UNUSED(num_tiles_y); ARM_COMPUTE_ERROR_ON(in.shape()[1] != static_cast(num_tiles_x * num_tiles_y)); // If we have a vertical filter (i.e. 1x3, 1x5,..), we still need to take the elements along the x direction (step_y_transf_tile = 1) const int step_y_transf_tile = kernel_size.width == 1 ? 1 : output_tile.shape()[0]; // Initialize with zeros the input tile zeros(input_tile, Coordinates(0, 0), input_tile.shape()); for(int n = 0; n < num_batches; ++n) { for(int y = 0; y < h_in; ++y) { for(int x = 0; x < w_in; ++x) { // Load the input tile tile across the channels of the input tensor for(int z = 0; z < c_in; ++z) { input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)]; } // First transformation matrix_multiply(trans_matrix, input_tile, tmp_tile); // Second transformation matrix_multiply(tmp_tile, trans_matrix_transposed, output_tile); // Store the output tile const int xo = (y % num_tiles_x) * out_tile_w; const int yo = (y / num_tiles_x) * out_tile_h; const int zo = x; const int output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out); for(int yi = 0; yi < static_cast(out_tile_h); ++yi) { for(int xi = 0; xi < static_cast(out_tile_w); ++xi) { // Check out-of-bound writes if((xo + xi < w_out) && (yo + yi < h_out)) { out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * step_y_transf_tile]; // Add bias out[output_offset + yi * stridey_out + xi] += b[zo]; } } } } } } return out; } template SimpleTensor winograd_filter_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info); template SimpleTensor winograd_input_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info); template SimpleTensor winograd_output_transform(const SimpleTensor &in, const SimpleTensor &b, const TensorShape &output_shape, const WinogradInfo &winograd_info); template SimpleTensor winograd_filter_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info); template SimpleTensor winograd_input_transform(const SimpleTensor &in, const TensorShape &output_shape, const WinogradInfo &winograd_info); template SimpleTensor winograd_output_transform(const SimpleTensor &in, const SimpleTensor &b, const TensorShape &output_shape, const WinogradInfo &winograd_info); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute