/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "SoftmaxLayer.h" #include "arm_compute/core/Types.h" namespace arm_compute { namespace test { namespace validation { namespace reference { template ::value, int>::type> SimpleTensor softmax_layer(const SimpleTensor &src, float beta, size_t axis) { // Create reference SimpleTensor dst{ src.shape(), src.data_type(), 1 }; // Compute reference. Lower dims are the collapsing of the first axis // dimensions (i.e., the flattened dimension of each batch). The upper dims are // instead the batches we want to normalize int lower_dims = 1; for(size_t i = 0; i < axis; i++) { lower_dims *= src.shape()[i]; } int upper_dims = 1; for(size_t i = axis; i < TensorShape::num_max_dimensions; i++) { upper_dims *= src.shape()[i]; } for(int r = 0; r < upper_dims; ++r) { const T *src_row_ptr = src.data() + r * lower_dims; T *dst_row_ptr = dst.data() + r * lower_dims; // Find max const T max = *std::max_element(src_row_ptr, src_row_ptr + lower_dims); // Regularize T sum(0.f); std::transform(src_row_ptr, src_row_ptr + lower_dims, dst_row_ptr, [&sum, max, beta](T val) { const T res(std::exp((val - max) * beta)); sum += res; return res; }); // Normalize std::transform(dst_row_ptr, dst_row_ptr + lower_dims, dst_row_ptr, [sum](T val) { return val / sum; }); } return dst; } template ::value, int>::type> SimpleTensor softmax_layer(const SimpleTensor &src, float beta, size_t axis) { // Note: Output quantization info should always have scale = 1/256 and offset = 0 const QuantizationInfo output_quantization_info = QuantizationInfo(1.f / 256, 0); SimpleTensor src_tmp = convert_from_asymmetric(src); SimpleTensor dst_tmp = softmax_layer(src_tmp, beta, axis); SimpleTensor dst = convert_to_asymmetric(dst_tmp, output_quantization_info); return dst; } template SimpleTensor softmax_layer(const SimpleTensor &src, float beta, size_t axis); template SimpleTensor softmax_layer(const SimpleTensor &src, float beta, size_t axis); template SimpleTensor softmax_layer(const SimpleTensor &src, float beta, size_t axis); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute