/* * Copyright (c) 2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ScatterLayer.h" #include "tests/validation/Helpers.h" #include "arm_compute/core/TensorShape.h" namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { template T reduce_op(const T ¤t,const T &update,const ScatterFunction func) { switch(func) { case ScatterFunction::Update: return update; break; case ScatterFunction::Add: return current + update; break; case ScatterFunction::Sub: return current - update; break; case ScatterFunction::Max: return std::max(current, update); break; case ScatterFunction::Min: return std::min(current, update); break; default: ARM_COMPUTE_ERROR("Unsupported Scatter function"); break; } } template float reduce_op(const float ¤t,const float &update,const ScatterFunction func); } // NOTE: This function expects collapsed tensors as input. // Batch dims for update/indices tensors should be collapsed into a single dim. // Data dims should be collapsed into a single dim for both update and src tensors prior to calling this function. template SimpleTensor scatter_layer_internal(const SimpleTensor &src, const SimpleTensor &updates, const SimpleTensor &indices, const TensorShape &out_shape, const ScatterInfo &info) { // 1. If zero initialization variable is false, copy src data to dst. SimpleTensor dst{ out_shape, src.data_type(), 1 }; if(!info.zero_initialization) { std::copy_n(src.data(), src.num_elements(), dst.data()); } // Number of elements between each value of the dim being iterated through const unsigned int data_stride = updates.shape().total_size_lower(updates.shape().num_dimensions() - 1); const unsigned int no_output_dims = out_shape.num_dimensions(); // Calculate output stride at given index for all output dims. std::vector out_stride_at_idx(no_output_dims); for (unsigned int i = 0 ; i < no_output_dims; i++) { out_stride_at_idx[i] = out_shape.total_size_lower(i); } const unsigned int indices_x_dim = static_cast(indices.shape()[0]); const unsigned int indices_y_dim = static_cast(indices.shape()[1]); // 2. Iterate over indices tensor y-dim and replace sections of dst tensor with relevant areas of update tensor. for(unsigned int i = 0; i < indices_y_dim; i++) { // NOTE : Currently, indices.shape() == [X, Y, 1, 1], where X is the indices dim and Y is the batch dim // Starting index for both the update and indices tensors. const unsigned int update_dim_start = i * data_stride; const unsigned int indices_dim_start = i * indices_x_dim; bool out_of_bounds = false; unsigned int out_offset_acc = 0; // Iterate over each indices value for the relevant batch and accumulate the offset. for(unsigned int j = 0; j < indices_x_dim; j++) { // Get first index value with i * indices_x_dim (iterating through y-dim/batch idx), then iterate through x dim by adding k const int index_value = indices[indices_dim_start + j]; const unsigned int out_dim = no_output_dims - (j+1); // Calculate corresponding output dim to current index value. if(index_value < static_cast(out_shape[out_dim]) && index_value >= 0) { out_offset_acc += (index_value * out_stride_at_idx[out_dim]); // offset accumulation } else { out_of_bounds = true; break; } } // If not out of bounds, copy update tensor elements to output if(!out_of_bounds) { for (unsigned int j = 0 ; j < data_stride; j++) { dst[out_offset_acc + j] = reduce_op(dst[out_offset_acc + j], updates[update_dim_start + j], info.func); } } } return dst; } template SimpleTensor scatter_layer(const SimpleTensor &src, const SimpleTensor &updates, const SimpleTensor &indices, const TensorShape &out_shape, const ScatterInfo &info) { return scatter_layer_internal(src, updates, indices, out_shape, info); } template SimpleTensor scatter_layer(const SimpleTensor &src, const SimpleTensor &updates, const SimpleTensor &indices, const TensorShape &out_shape, const ScatterInfo &info); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute