/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Reorder.h" #include "src/core/NEON/kernels/arm_gemm/utils.hpp" namespace arm_compute { namespace test { namespace validation { namespace reference { /* * Generic transform. * * Assuming the untransposed case, this works by first reading * consecutive values from the first input row. This same number of values * are then read from the next rows. Now return to the first * input row and repeat. * * Need to cope with the work requested in either dimension not actually * being a multiple of the block sizes. */ template struct Transform_ref { template static void Transform(TOut &out, const TIn in, const int stride, const int y0, const int ymax, const int x0, const int xmax) { // NOTE: This code is disabled to avoid the call to get_vector_length(), so templated transforms will not be // correct for SVE. This is not an issue as we have specializations for all SVE cases. // For SVE cases we multiply the interleave factor by the vector length. // const unsigned int IntBy = tIntBy * (vlt == VLType::SVE ? get_vector_length() / BlockBy : 1); const unsigned int IntBy = tIntBy; int out_index = 0; const int n_whole_y_blocks = (ymax - y0) / IntBy; const int y_remainders = (ymax - y0) % IntBy; const int n_y_blocks = n_whole_y_blocks + (y_remainders ? 1 : 0); const int n_whole_x_blocks = (xmax - x0) / BlockBy; const int x_remainders = (xmax - x0) % BlockBy; const int n_x_blocks = n_whole_x_blocks + (x_remainders ? 1 : 0); // "Y" loop: advance down the rows of the source IntBy rows at a time. // Set up fill_rows to show the number rows to copy from, and blank_rows // for the number of blank rows to add. for(int y_block = 0; y_block < n_y_blocks; y_block++) { const int fill_rows = (y_block < n_whole_y_blocks) ? IntBy : y_remainders; const int blank_rows = IntBy - fill_rows; const int y_base = y0 + (y_block * IntBy); // So now advance along this block of rows, BlockBy columns at a time. for(int x_block = 0; x_block < n_x_blocks; x_block++) { const int fill_cols = (x_block < n_whole_x_blocks) ? BlockBy : x_remainders; const int blank_cols = BlockBy - fill_cols; const int x_base = x0 + (x_block * BlockBy); for(int row = 0; row < fill_rows; row++) { for(int col = 0; col < fill_cols; col++) { // In-range copy. If it's transposed, we reverse the sense of rows and columns here. if(Transposed) { out[out_index] = in[(x_base + col) * stride + y_base + row]; out_index++; } else { out[out_index] = in[(y_base + row) * stride + x_base + col]; out_index++; } } // "col" tail - row is in range but column is out of range. for(int col = 0; col < blank_cols; col++) { out[out_index] = 0; out_index++; } } // "row" tail - row is out of range so fill with zeros always. const d_type zeroval = 0; const int pads = blank_rows * (fill_cols + blank_cols); for(int i = 0; i < pads; i++) { out[out_index] = zeroval; } out_index += pads; } } } }; template SimpleTensor reorder_layer(const SimpleTensor &src, const TensorShape &output_shape, WeightFormat output_wf) { SimpleTensor dst{ output_shape, src.data_type() }; const int cols = src.shape()[0]; const int rows = src.shape()[1]; switch(output_wf) { case WeightFormat::OHWIo4: { Transform_ref<4, 1, true, sizeof(float), sizeof(float), float, arm_gemm::VLType::None>::Transform &, SimpleTensor>(dst, src, rows, 0, rows, 0, cols); break; } case WeightFormat::OHWIo8: { Transform_ref<8, 1, true, sizeof(float), sizeof(float), float, arm_gemm::VLType::None>::Transform &, SimpleTensor>(dst, src, rows, 0, rows, 0, cols); break; } default: break; } return dst; } template SimpleTensor reorder_layer(const SimpleTensor &src, const TensorShape &output_shape, WeightFormat output_wf); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute