/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ROIPoolingLayer.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "tests/validation/Helpers.h" #include namespace arm_compute { namespace test { namespace validation { namespace reference { template <> SimpleTensor roi_pool_layer(const SimpleTensor &src, const SimpleTensor &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo) { ARM_COMPUTE_UNUSED(output_qinfo); const size_t num_rois = rois.shape()[1]; const size_t values_per_roi = rois.shape()[0]; DataType output_data_type = src.data_type(); TensorShape input_shape = src.shape(); TensorShape output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois); SimpleTensor output(output_shape, output_data_type); const int pooled_w = pool_info.pooled_width(); const int pooled_h = pool_info.pooled_height(); const float spatial_scale = pool_info.spatial_scale(); // get sizes of x and y dimensions in src tensor const int width = src.shape()[0]; const int height = src.shape()[1]; // Move pointer across the fourth dimension const size_t input_stride_w = input_shape[0] * input_shape[1] * input_shape[2]; const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2]; const auto *rois_ptr = reinterpret_cast(rois.data()); // Iterate through pixel width (X-Axis) for(size_t pw = 0; pw < num_rois; ++pw) { const unsigned int roi_batch = rois_ptr[values_per_roi * pw]; const auto x1 = rois_ptr[values_per_roi * pw + 1]; const auto y1 = rois_ptr[values_per_roi * pw + 2]; const auto x2 = rois_ptr[values_per_roi * pw + 3]; const auto y2 = rois_ptr[values_per_roi * pw + 4]; //Iterate through pixel height (Y-Axis) for(size_t fm = 0; fm < input_shape[2]; ++fm) { // Iterate through regions of interest index for(size_t py = 0; py < pool_info.pooled_height(); ++py) { // Scale ROI const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale); const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale); const int roi_width = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f); const int roi_height = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f); // Iterate over feature map (Z axis) for(size_t px = 0; px < pool_info.pooled_width(); ++px) { auto region_start_x = static_cast(std::floor((static_cast(px) / pooled_w) * roi_width)); auto region_end_x = static_cast(std::floor((static_cast(px + 1) / pooled_w) * roi_width)); auto region_start_y = static_cast(std::floor((static_cast(py) / pooled_h) * roi_height)); auto region_end_y = static_cast(std::floor((static_cast(py + 1) / pooled_h) * roi_height)); region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width); region_end_x = std::min(std::max(region_end_x + roi_anchor_x, 0), width); region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height); region_end_y = std::min(std::max(region_end_y + roi_anchor_y, 0), height); // Iterate through the pooling region if((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { /* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to 0 */ auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w; *out_ptr = 0; } else { float curr_max = -std::numeric_limits::max(); for(int j = region_start_y; j < region_end_y; ++j) { for(int i = region_start_x; i < region_end_x; ++i) { /* Retrieve element from input tensor at coordinates(i, j, fm, roi_batch) */ float in_element = *(src.data() + i + j * input_shape[0] + fm * input_shape[0] * input_shape[1] + roi_batch * input_stride_w); curr_max = std::max(in_element, curr_max); } } /* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to curr_max */ auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w; *out_ptr = curr_max; } } } } } return output; } /* Template genericised method to allow calling of roi_pooling_layer with quantized 8 bit datatype */ template <> SimpleTensor roi_pool_layer(const SimpleTensor &src, const SimpleTensor &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo) { const SimpleTensor src_tmp = convert_from_asymmetric(src); SimpleTensor dst_tmp = roi_pool_layer(src_tmp, rois, pool_info, output_qinfo); SimpleTensor dst = convert_to_asymmetric(dst_tmp, output_qinfo); return dst; } } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute