/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "NormalizationLayer.h" #include "arm_compute/core/Types.h" namespace arm_compute { namespace test { namespace validation { namespace reference { template SimpleTensor normalization_layer(const SimpleTensor &src, NormalizationLayerInfo info) { // Create reference SimpleTensor dst{ src.shape(), src.data_type(), 1 }; // Compute reference const uint32_t norm_size = info.norm_size(); NormType type = info.type(); float beta = info.beta(); uint32_t kappa = info.kappa(); const int cols = src.shape()[0]; const int rows = src.shape()[1]; const int depth = src.shape()[2]; int upper_dims = src.shape().total_size() / (cols * rows); float coeff = info.scale_coeff(); int radius_cols = norm_size / 2; // IN_MAP_1D and CROSS_MAP normalize over a single axis only int radius_rows = (NormType::IN_MAP_2D == type) ? norm_size / 2 : 0; if(type == NormType::CROSS_MAP) { // Remove also depth from upper dimensions since it is the dimension we // want to use for normalization upper_dims /= depth; for(int r = 0; r < upper_dims; ++r) { for(int i = 0; i < rows; ++i) { for(int k = 0; k < cols; ++k) { for(int l = 0; l < depth; ++l) { float accumulated_scale = 0.f; for(int j = -radius_cols; j <= radius_cols; ++j) { const int z = l + j; if(z >= 0 && z < depth) { const T value = src[k + i * cols + z * rows * cols + r * cols * rows * depth]; accumulated_scale += value * value; } } dst[k + i * cols + l * rows * cols + r * cols * rows * depth] = kappa + accumulated_scale * coeff; } } } } } else { for(int r = 0; r < upper_dims; ++r) { for(int i = 0; i < rows; ++i) { for(int k = 0; k < cols; ++k) { float accumulated_scale = 0.f; for(int j = -radius_rows; j <= radius_rows; ++j) { const int y = i + j; for(int l = -radius_cols; l <= radius_cols; ++l) { const int x = k + l; if((x >= 0 && y >= 0) && (x < cols && y < rows)) { const T value = src[x + y * cols + r * cols * rows]; accumulated_scale += value * value; } } } dst[k + i * cols + r * cols * rows] = kappa + accumulated_scale * coeff; } } } } if(beta == 1.f) { for(int i = 0; i < dst.num_elements(); ++i) { dst[i] = src[i] / dst[i]; } } else if(beta == 0.5f) { for(int i = 0; i < dst.num_elements(); ++i) { dst[i] = src[i] / std::sqrt(dst[i]); } } else { for(int i = 0; i < dst.num_elements(); ++i) { dst[i] = src[i] * std::exp(std::log(dst[i]) * -beta); } } return dst; } template SimpleTensor normalization_layer(const SimpleTensor &src, NormalizationLayerInfo info); template SimpleTensor normalization_layer(const SimpleTensor &src, NormalizationLayerInfo info); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute